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OBJECTIVE MAPPING AND DESIGNING MAPPING ARRAYS
One useful application of linear estimation is “objective mapping”. This procedure combines

a finite number of of discrete observations (taken at particular times and places) into a map, or a
continuous time series of maps, of the field under examination. This application is discussed here
for two reasons: (a) it is a useful technique in its own right; (b) it provides a specific context in
which to explore linear estimation.

1. Mapping scalar fields
First, consider the problem of mapping some scalar property such as surface temperature

θ. Our objective is to use linear estimation and a number of data θ(n) = θ(xn, tn) to draw a
continuous map of θ(x, t). The first, and most crucial, step in any such mapping is to be very
specific about what is to be mapped. Obviously it will not be possible to map every little detail of
temperature. More likely, there are particular scales (in time and space) which are of interest and
may span enough data to be accurately mapped. It would be stupid to employ a scheme which does
its best at the impossible while being sub-optimal at the real purpose. Thus we must first define
what is to be estimated. One typical objective is to map a smoothed temperature Θ defined as a
filtered version of actual temperature θ such as

Θ(x, t) =
∫

dξ
∫

dτ θ(ξ, τ) W (ξ − x, τ − t) (1)

where W is a smoothing filter centered on the point ξ = x and τ = t. A simple filter is the
multidimensional analog of the running mean filter where all values near x, t are added with equal
weight. In general, as W includes a larger ξ, τ volume, resolution is lost (small scales are filtered
out) but the mapping accuracy is improved because more observations are included within W ’s
range.

With the estimand (here Θ) defined, the mapping procedure must be selected to optimize
specific properties of the estimate. The procedure should produce a small error Θ̂ − Θ but there
is no way of knowing this error without knowing the answer. All that can be asked is that the
procedure, when applied to many sets of data, usually produce a small error, say have minimum
mean (over many mapping exercises) square error. The minimum MSE estimate is

Θ̂(x, t) = θ · D−1 · 〈θΘ(x, t)〉 or Θ̂(x, t) =
∑

n

θ(n)
∑

m

D−1(n,m)〈θ(m)Θ(x, t)〉 (2)

where the required statistics can be computed from the 2-point, 2-time covariance C(x,y, t, s) =
〈θ(x, t) θ(y, s)〉 according to

D(n,m) = C(xn,xm, tn, tm) b(m) = 〈θ(m)Θ(x, t)〉 =
∫

dξ
∫

dτ W (ξ−x, τ−t) C(xn, ξ, t, τ)

(3)
Note how 〈θΘ〉 is a covariance of linear operations on θ and is, therefore, computable as an oper-
ation on C. The components of the estimate (2) have physical meaning: the matrix D describes
how the data are related to each other (Are they redundant?) while b describes how the data are
related to the estimand Θ.

To employ (2) one needs to know the mean product of θ at two places and times. Recall that
the average 〈 〉 is meant to be over many repetitions of the map drawing exercise. This is mean-
ingless unless some class of position-time pairs are statistically similar to each other so that the
average can be over more than one example. Most commonly time averages are employed, saying
that the procedure is to be optimized for data taken with the same relative time separations but at
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arbitrary absolute times. Then C(x,y, t, s) = C(x,y, t − s) can be computed by averaging over
time holding t−s fixed. This is, in principle, sufficient to define C if there are many observations at
all possible positions. It might also be that, over the scales of interest, statistics (now meaning time
averages) depend weakly on position (are homogeneous) so that C(x,y, t− s) = C(x− y, t− s)
can be computed by averaging over positions while holding x− y fixed. This makes it possible to
implement the mapping procedure with many fewer observations. It might further be that the field
is approximately isotropic so that the covariance of two θs depends only on their time separation
and the distance between them. Then C(x− y, t − s) = C(|x− y|, t − s) and yet fewer observa-
tions are needed to specify the requisite statistics. The statistical assumptions about C define the
kind of field for which the mapping procedure will be optimal. As the assumption are less valid
the procedure becomes less optimal but hopefully it will still be good. In any case, to improve it
one would need to know how the assumptions are violated; if this is not known then the procedure
is optimal.

In applying the minimum MSE technique it is essential that the estimated mean product,
C(x,y, t − s) be a possible mean product. In particular, all D(n,m) = C(xn,xm, tn − tm) must
be positive semi-definite matrices. By this we mean that the mean square of any linear combination
of θs must be nonnegative, that is

q =
∑

m

α(m)θ(m), 〈q2〉 =
∑

m

∑

n

α(n)〈θ(n)θ(m)〉α(m) = α · D · α ≥ 0 (4)

for all α α. If α·D · α ≥ 0 for any α then D is said to be a positive semi-definite matrix. From
a singular value decomposition of the square matrix D it is seen that this means D must have no
negative eigenvalues. Not all functions C(x,y, s) have this property and if objective mapping is
attempted with one that does not the result will likely be garbage. The mapping estimator is based
on extremizing 〈(ŷ − y)2〉; if Dnm has negative eigenvalues the extremum is not the minimum and
an α which extremizes the MSE at a large negative value may be chosen.

In the case where θ is homogeneous and stationary the easiest way to insure that C is a
possible mean product is to insure that it corresponds to a positive semi-definite spectrum (i.e. no
negative spectral values). Recall that for stationary data the power spectrum of a time series is
proportional to the eigenvalue spectrum of the time-lagged covariance. The same things works in
many dimensions. Let

θ(x, t) =
∑

ω

∑

k

a(ω,k) exp(iωt + ik · x) (5)

C(x,y, t, s) =
∑

ω

∑

k

∑

σ

∑

l

a(ω,k)a∗(σ, l) exp[iω(t−s)+ik·(x−y)] exp[i(ω−σ)s+i(k−l)·y]

(6)
If this is to depend only on t − s and x − y then the mean product 〈a(ω,k)a∗(σ, l)〉 must vanish
except when σ = ω and k = l so

C(x, t) =
∑

ω

∑

k

〈|a(ω,k)|2〉 exp(iωt + ik · x) (7)

Thus if the wavenumber-frequency spectrum made from |a(ω,k)|2 is positive, C(x, t) is a possi-
ble covariance and will yield positive semi-definite matrices D(n,m) regardless of the sampling
positions and times.

One practical procedure is to express C(x, t) in terms of a set of prescribed functions of x and
t, constrain this combination to adjust the representation to fit observed sample mean products and
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have a nonnegative Fourier transform (which is the spectrum). Of course, one should make sure
that the sampling error of these mean products is small enough to give reliable estimates and not
to insist that the function reproduce every sample mean product exactly. When the process is not
stationary and homogeneous one procedure is to generate the covariance as a sum of the form

C(x,y, t, s) =
∑

n

λ2
nVn(x, t)Vn(y, s) (8)

where the functions V and the λs are adjusted so C approximates the observed mean products.
This EOF-like structure of C insures that it is a possible covariance and thus leads to appropriate
Ds.

Objective analysis is a great way to draw maps, but its real virtue is that quantitative estimates
of mapping error can be made. The MSE takes a familiar form:

〈(Θ̂ − Θ)2〉 = 〈Θ2〉
[

1 − 〈Θ2〉−1〈Θθ〉 · D−1 · 〈θΘ〉
]

(9)

The last term is called the squared multiple correlation between Θ and the set of data θ. If the
θ are all uncorrelated it is simply the sum of the squared correlations between Θ and each of the
θ(n).

Note that the MSE (9) depends only on statistics, not actual observations. Thus if the mean
product C is known then the things that determine MSE are (a) the location (and time) at which
Θ is to be estimated, (b) the filter W used to define Θ, and (c) the location of the observations.
For a given array (the times and locations of observations) it is then easy to determine mapping
accuracy. It will depend on the filter and the location where Θ is to be estimated. If no filtering
is applied, mapping error will vanish at measurement locations and will grow away from these
points. If a smoothing filter is applied, the estimate will never equal the observation (since Θ and θ
are different quantities), there will be some error even at measurement locations, but the error will
grow more slowly as a function of distance from the observations. Again, if the objective is clearly
specified then performance can be determined quantitatively.

Because mapping error depends only on the statistics of the observations and the field to
be mapped, it is practical to use objective mapping to design sampling arrays and determine their
performance before observations are made (assuming the statistics can be determined from existing
data). To do this the objective and statistics are used to optimize the performance of candidate
arrays. The mapping error is examined and the array geometry changed until a desired balance
of accuracy and mapping domain size is achieved. Examples of this are provided by Bretherton,
Davis and Fandry (1976) in Deep-Sea Res. 23, 559-582.

2. Unbiased estimates
Objective mapping assumes an estimate of the form

Θ̂ = α · θ (10)

and requires knowing the mean product of the field θ. If the mean value of θ does not vanish, this
estimate is sub-optimal. To account for mean values an additional constant should be appended
to the model and adjusted just like the αs; a simple way of doing this is to add a constant as one
component of θ. Regardless of the method, both the mean value and the variance of θ must be
known . Unfortunately, in the real world energetic low frequency variability is the rule rather than
the exception, and the mean is not well defined nor easily measured. For example, in mapping
temperature would the mean be over several ice-age cycles or over recent time be more appropri-
ate?
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Because precise definition of mean and variance do not seem central to mapping over a finite
time span it, is intuitively appealing to see that good maps can be drawn without this information.
Formally, it is assumed that θ is statistically stationary and homogeneous so that the mean and
variance are constants. Then the bias of the estimate can be made to vanish by constraining the
sum of the weights, α(n), to be unity so that

〈Θ̂〉 =
∑

n

α(n)〈θ(n)〉 = 〈θ〉
∑

n

α(n) = 〈θ〉. (11)

Minimizing the MSE subject to the constraint
∑

α(n) = 1 is accomplished by modifying the
extremization operation using a Lagrange multiplier, λ. Thus we seek the minimum, with respect
to variations of α, of

〈[Θ̂−Θ]2〉 =
∑

n

∑

m

α(n)〈θ(n)θ(m)〉α(m)−2
∑

m

α(m)〈θ(m)Θ〉+〈Θ2〉+2λ[
∑

m

α(m)−1] (12)

Extremizing this gives α(n) as a function of λ from
∑

m

〈θ(n)θ(m)〉α(m) = 〈Θθ(n)〉 − λ u(n) (13)

where u is a vector with unit elements, i.e. u(n) = 1. Adjustment of λ to meet the constraint
∑

α = 1 gives

λ = −
1 −

∑

n,m u(n)D−1(n,m)〈θ(m)Θ〉
∑

n,m u(n) D−1(n,m) u(m)
(14)

where D−1 is the inverse of the matrix D(n,m) = 〈θ(n)θ(m)〉. This leads to

α = D−1 ·

[

b + u
1 − u · D−1 · b

u · D−1 · u

]

. (15)

where b = 〈θΘ〉 as below (2). The first term will be recognized as the weight for the unconstrained
estimate (2). The extra terms with u look messy but are not; for example u ·D−1 · u is simply the
sum of all the elements in the inverse of D.

Since no constant was added to the data set θ, this procedure clearly does not involve knowing
〈θ〉. Less obviously, the unbiased estimator also does not require knowledge of the variance. To
see this note that mean products, like 〈θ(n)θ(m)〉, can be expressed as

〈θ(n)θ(m)〉 = −
1

2
〈[θ(n) − θ(m)]2〉 +

1

2
[〈θ2(n)〉 + 〈θ2(m)〉] (16)

Statistics of the form [θ(n)−θ(m)]2 are called structure functions and involve only changes of θ;
thus they do not depend on knowing the mean (which subtracts out) or the variance. Substitution
of (16) (and the analogous expression for 〈θ(m)Θ〉) show that when

∑

α = 1 the MSE is

〈[Θ̂−Θ]2〉 = −
1

2

∑

n

∑

m

α(n)〈[θ(n)− θ(m)]2〉α(m)+
∑

m

α(m)〈[θ(m)−Θ]2〉+2λ[
∑

n

α(n)− 1].

(17)
The variances of θ and Θ subtract out of this so that the optimal weights and the MSE (for this
constrained procedure) do not depend on the mean or the variance. The constrained map will have
higher error (since the αs which exactly minimize MSE don’t add to unity) but this is usually a
small price to pay for having a good procedure for any mean and variance, especially when these
can’t be well determined.
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3. An example
Some insight into the behavior of different mapping procedures can be obtained from the

following simple example. Let θ(t) be a stationary process with covariance exp(−|t|) and suppose
we have two observations x(1) = θ(−1) and x(2) = θ(1). The data-data mean product

D(1, 1) = D(2, 2) = 1, D(1, 2) = D(2, 1) = e−2 (18)

has inverse

D−1(1, 1) = D−1(2, 2) = (1−e−4)−1, D−1(1, 2) = D−1(2, 1) = −e−2/(1−e−4) (19)

and
〈x(1)θ(t)〉 = e−|t+1|, 〈x(2)θ(t)〉 = e−|t−1| (20)

It is now relatively simple to examine the performance of three mapping methods. First is the
straight minimum MSE estimate of θ using weights

α(n) =
∑

m

D−1(n,m)〈θ(t)x(m)〉 (21)

whose MSE is plotted as E1 in Figure 1. The second procedure is the unbiased estimate based on
minimizing MSE while holding

∑

α = 1. The weights α(n) are given by (15) and the MSE is
plotted as the curve E2. The final case is an unconstrained estimate of a smoothed field

Θ(t) =
∫ t+0.5

t−0.5
θ(t′)dt′ (22)

A little integration of 〈θ(0)θ(t′)〉 provides 〈θ(0)Θ(t)〉 from which the weights and MSE can be
found. The MSE is the plot E3.

There are three general observations which this example typifies:
(a) The unconstrained estimate has lower error than the constrained unbiased estimate if the mean
values (here all zero) are known. Of course the comparison can not be made if a mean is not as-
sumed and if the assumption is wrong the unconstrained model may have the poorer performance.
(b) The smoothed field estimate is in error even at the data points (t = ±1) because the measure-
ments are of θ not Θ.
(c) Away from the data points, the error in estimating Θ is smaller than the error in estimating θ;
this simply shows that when the rapid fluctuations are filtered out, the smooth remainder becomes
easier to estimate. Remember that Θ̂ could be obtained by filtering θ̂ and this filtering would
remove some of the error too. If Θ were measured directly, its estimate would everywhere be more
accurate than the estimate of θ.

4. Vector fields
A special case of objective mapping worth examination is mapping a vector field, say the two-

dimensional U(x) where, for simplicity we treat different times as separate realizations. The fact
that two components components are to be predicted adds nothing new but notation and converts
(2) to

~̂
U(~x) = u · D−1 · 〈u ~U(~x)〉 (23)

where u is a collection of observations of ~U taken at particular positions (which make up the
observational array). The notation here is that an observation of ~U(~x1) contributes two elements
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Figure 1: The effect of smoothing and zero-bias constraint on optimal interpolation error. The
data are two values at t = ±1. 〈θ〉 and θ(t)θ(s)〉 = exp(−|t − s|). Solid curve is Mean Square
Error (MSE) for the minimum MSE (possibly biased) estimator. Upper (dotted) curve is MSE
for the optimal unbiased estimator. The other curves show MSE for estimating a smoothed field
Θ(t) = 1

2ε

∫ t+ε
t−ε θ(s) ds for ε = 0.3 and ε = 1.0.

of u, namely u(1) = Ux(~x1) and u(2) = Uy(~x1). The new thing here is dealing with vector data
and the way they appear in D.

The elements of D and 〈u ~U(~x)〉 involve mean products or, if the means are removed covari-
ances, of the form 〈Ui(~x0)Uj(~x1)〉 where the subscripts i and j indicate directions. You will find
other special forms of tensors of various orders in Chapter 3 of G.K. Batchelor’s The theory of
homogeneous turbulence or any good text covering tensors.

It would be rare to have enough information to map out this function over all pairs of positions
put the problem is closer to feasible if the field is homogeneous, in which case 〈Ui(~x0)Uj(~x0+~r)〉 =
〈Ui(0)Uj(~r)〉 and observations from different locations but the same separation are equivalent.
There is still a lot of information here because the covariance is a function of a vector argument.

The simplest case is when the vector field is isotropic, that is all directions are equivalent
just as all positions are equivalent in a homogeneous field. There is still directional information in
the covariance since both the velocity U and the separation vector ~r are vectors and their relative
orientation can affect the velocity covariance. Tensor analysis shows that all isotropic second order
tensors, such as the dyad 〈~U ~V 〉, take a simple form which for the case of interest here is

〈Ui(0)Uj(~r)〉 = γiγj[R(r) − S(r)] + δijS(r) (24)

where γi is the cosine of angle between the ith component of ~U and ~r, δij is the Kronecker Delta,
and R and S are general functions of r, the magnitude of ~r. Here R(r) is the covariance of the
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velocity components parallel to the separation vector (called the longitudinal covariance) and S(r)
is the covariance of the components perpendicular to ~r (called the transverse covariance). In the
special case of the covariance of a velocity field there are restrictions on R and S. Because these are
essentially covariances of scalars they must result in a positive semi-definite covariance matrices
between observations taken from all possible sampling arrays. This is equivalent to saying they
must have nonnegative Fourier (wavenumber) spectra, just as all time-lagged covariances must
lead to nonnegative frequency spectra. Necessary conditions for these functions are R(0) = S(0)
and that both functions be smaller than R(0) for r > 0.

It is more helpful to write (24) as

〈Ui(0)Uj(~r)〉 =
rirj

r2
[R(r) − S(r)] + δijS(r) (25)

As you might suppose, if the vector field is nondivergent there is a relation between R and S which
can be determined by computing

∑

j ∂/∂rj〈Ui(0)Uj(~r)〉 using (25) and requiring it to vanish. In
doing this note that

∂

∂rn

R(r) =
rn

r

dR(r)

dr

∂

∂rm

rnrm

r2
R(r) = (N − 1)

rn

r2
R(r) +

1

r

dR(r)

dr
(26)

where N is the dimensionality of the space spanned by r. This gives S(r) = R(r) + r
N−1

dR(r
dr

.
Thus the statistics of a homogeneous, isotropic and nondivergent vector field are determined by a
single function.

5. Testing models with data
One use of data is to test the differential equations used in analytical or numerical models.

For example, one might attempt to verify geostrophy by comparing maps of pressure and velocity.
Or the assumption of approximate horizontal velocity nondivergence might be tested directly from
velocity maps. This raises a subtle but very crucial point about objective mapping in particular and
model testing in general.

A great deal of the structure of objective maps is built in by the statistics used in the mapping
procedure. This follows because the minimum MSE estimator of Y based on the data q can be
written as either

ŷ = α · q or ŷ = β · qy (27)

where, if the data-data product matrix is D(n,m) = 〈q(n)q(m)〉,

α = D−1 · 〈qy〉, β = q · D−1. (28)

This shows why linear operations on y (such as filtering or differentiation) are optimally estimated
by applying that operation to ŷ. It also shows the subtle way that 〈qy〉 builds properties into the
estimate. Say, for example, that estimates û and v̂ of the two velocity components were made from
the same data q. These estimates would be

û(x) = β · 〈q u(x)〉, v̂(x) = β · 〈q v(x)〉, (29)

where β is the same for both. Note that û will be nondivergent if the statistics used to draw the map
obey 〈q∂xu〉 + 〈q∂yv〉 = 0, regardless of what the observations q are. There are two lessons:
(a) The statistics assumed in order to map data can affect the conclusions as much as the data
do. In fact, one could map a given data set using different statistical descriptions, each obeying
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different “dynamics”, and verify any number of mutually contradictory hypotheses. Thus one must
be extremely careful that the test outcome is not determined by the test methodology.
(b) The test of hypotheses is often carried out much more clearly and accurately on the statistics
of all available data than on a particular subset of the data suitable for a deterministic test. For
example, rather than mapping u one might do better to determine 〈u(y)u(x)〉 directly from the
data and see if ∇x · 〈u(y)u(x)〉 = 0.


