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RANDOM WALKS, DIFFUSION AND OTHER STATISTICAL MODELS
The familiar continuum equations of motions are actually statistical models and deserve ex-

amination from this point of view. They are tremendously successful in reducing the information
required to describe fluid dynamics. There is also one interesting fundamental aspect of these
equations, time irreversibility, which can be understood only within the statistical context.

1. Irreversibility
Consider the foundations of the familiar Navier-Stokes equations used to describe viscous

fluid motion. Imagine a fluid composed of N molecules, each identified by the subscript n, with
position r, velocity v and identical masses m. These molecules obey an equation of motion of the
form

m
d2

dt2
rn = m

d

dt
vn = F(rn|r1, r2, ....., rN ) (1)

where F describes the intermolecular force field. There are something like N = 1048 molecules in
the world ocean so clearly some reduction in complexity is required. To do this the fundamentally
statistical concept of a fluid continuum is introduced. It is based on the hypothesis that all the
particles within a macroscopic volume are statistically equivalent; the volume then defines an
ensemble and continuum properties are the statistics of the molecules in the volume. Thus the
continuum velocity is defined as

u(x, t) =
∑

vol(x)

mvn /
∑

vol(x)

m (2)

where vol(x) is a small volume surrounding x. Thus u is the average particle velocity near x.
In the following section we will examine the statistical mechanics approach to deriving evolution
equations for statistical variables like u. Whether this is done with statistics or heuristic arguments
about scale separation, the result (cf. Batchelor, An Introduction to Fluid Dynamics, 3.3) are the
Navier-Stokes and advection-diffusion equations

d

dt
u = −

1

ρ
∇p + ∇ · ν∇u

d

dt
θ = ∇ · α∇θ (3)

where ρ is the density (from the average number of particles in vol(x)) while ν and α are the
kinematic viscosity and diffusivity.

Comparison of (1) and (3) shows immediately that something fundamental has been changed
in the continuum description. The original equation is strictly reversible with respect to changing
the sense of time. If the velocities of all particles were reversed at the end of an experiment he
system would return to its initial state. The continuum equations, in contrast, have a definite sense
of time since kinetic energy and θ2 are lost as time increases. The origin of this paradox is that the
continuum equations describe the spatial average u. While the mean square velocity of all parti-
cles (molecular kinetic energy) may be conserved the mean square of the average velocity is not
conserved. Dissipation of continuum energy is associated with generation of heat which increases
the molecular velocity fluctuations around the mean u, thus allowing |u|2 to decrease while con-
serving total molecular kinetic energy. Time irreversibility in continuum equations results from the
fact that these are equations for averages; it is closely related to the sense of time flow provided by
the Second Law of Thermodynamics (the Thermodynamic laws are also statistical models).

The smallest scales of motion in the ocean are of the order one millimeter. If this is used
to define the continuum averaging volume, the complexity of the ocean is reduced to something
like 1028 degrees of freedom. Unfortunately, extending the kind of averaging used to develop the
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continuum equation to further reduce complexity does not work well. The conventional approach
is to imagine that an experiment can be repeated many times and to define the ensemble average
velocity as

〈u(x, t)〉 =
1

N

N
∑

n

un(x, t) , u
′ = u − 〈u〉 (4)

where each subscript n refers to one repeated realization of the flow in which time t is reinitialized
at the experiment start. Substitution of (4) into (3) followed by accurate use of the linear operator
defining the average 〈·〉 and noting ∇ · u = 0 yields

∂t〈u〉 + 〈u〉 · ∇〈u〉 = −
1

ρ
∇〈p〉 − ∇ · ν · ∇〈u〉 − ∇ · 〈u′

u
′〉 (5)

The Reynolds stress appearing on the right of (5) is something like the viscous stress in the contin-
uum equation in that it is an average stress produced by variations of velocity about the average.
Unfortunately, it has not been possible to “close” this equation with an appropriate statistical rela-
tion between this stress and the mean velocity.

In fluid dynamics courses the derivations of the molecular flux and stress laws are usually
based on an experimentally supported hypothesis that these fluxes are linearly related to first deriva-
tives of the associated potential (e.g. temperature for heat flux). Actually, we already have the
tools to develop a more dynamically satisfying model based on molecular random walks. The term
“random walk” refers to a class of processes which is important in physics and which is central to
understanding how sample averages converge as the number of samples increases. It is a model of
the molecular dynamics which lead to diffusive transport.

2. Discrete random walks
Consider the one-dimensional motion of “molecules” which are bumped every time interval

∆ by intermolecular collisions and take on new velocities which are maintained over the next time
interval. Define times tn = n∆ to be the times when collisions occur, X(tn) be the particle position
at time tn and V (tn) be the velocity over the interval tn−1 < t < tn. The position of a particle is
then

X(tn) = X(tn−1) + ∆V (tn) = X(0) + ∆
n

∑

m=1

V (tm) (6)

This completely deterministic process must be treated as a random one if each V (tm) is not known.
It is still possible, however, to say a great deal about the behavior of “molecules” if the statistics
of V are known. The statistics of X are defined by imagining that the process (6) is carried
out many times starting with the same point, X(0) = 0 say, but with a new sequence of V ’s
in each realization. The collection of such realizations is the ensemble over which probability
and averages are defined. A random walk is the special case of this process when V (tm) has
stationary (independent of the absolute time tm statistics. A strict random walk also requires V (tn)
to be statistically independent of V (tm) for all n 6= m. Because statistics are stationary the mean
velocity

〈V (tm)〉 =
1

N

N
∑

n

Vn(tm) = 〈V 〉 (7)

is a constant which here will be taken to vanish.
It is easy to examine the typical behavior of X because the averaging operator is linear and

passes through other linear operators. For example, the mean position and variance are

〈X(tn)〉 = X(0) + ∆
n

∑

m=1

〈V (tm)〉 = n∆V = 0 (8)
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〈X2(tn)〉 = ∆2
n

∑

m=1

n
∑

k=1

〈V (tm) V (tk)〉. (9)

Because V has stationary statistics, its covariance depends only on the difference of the two asso-
ciated times:

〈V (tm) V (tk)〉 = CV V (tk − tm) = 〈V (tk−m) V (0)〉 (10)

It follows from the requirement that successive values of V are independent that CV V (tn−m) =
〈V 2〉δ(n,m) so that

〈X2(tn)〉 = 〈V 2〉∆2
n

∑

m=1

n
∑

k=1

δ(k,m) = 〈V 2〉∆2 · n = 〈V 2〉∆ · tn (11)

and the variance of displacement grows linearly with t. The analog of the molecular diffusivity is
(see below)

κ =
1

2

d〈X2〉

dt
=

1

2
∆〈V 2〉 so 〈X2〉 = 2κt. (12)

The statistics of X(t) are clearly not stationary so that the probability density of position,
FX(t)(r), depends on t. Because X is a sum, the Central Limit Theorem shows the probability
density to be Gaussian:

FX(t)(r) = [2π〈X2〉]−1/2 exp[−r2/2〈X2〉] (13)

From this pdf it is straightforward to find the mean concentration of some tracer released at r = 0.
According to the definition of a pdf, the probability of r < X(t) < r + dr is FX(t)(r) dr. Thus if
M is the mass of tracer released in each realization and the variance X 2 is 2κt, then the average
concentration of tracer is

Γ(x, t) = M [4πκt]−1/2 exp[−r2/4κt] (14)

where M =
∫

dx Γ. Two- and three-dimensional analogs are simple extensions of (13–14).
Direct calculation shows that Γ evolves according to the diffusion equation. The motivation

for extending this to the advection-diffusion equation involves one main hypothesis: the molecular
processes occur over such small scales that the diffusive fluxes are not changed by advective shear.
It is the analog of this hypothesis that causes trouble when one applies the same arguments to
turbulence.

A general result that follows from the example above is that the variance of a sum of in-
dependent, equally distributed numbers grows as the number of elements in the sum and as that
number becomes large the sum has a normal distribution. Since averages, which are defined in
terms of infinite sums, are usually approximated by finite sums, this result is central to estimating
the accuracy of sample (realizable) statistics.

3. Continuous random walks
To see how molecular diffusion differs from turbulent transport, consider the differential limit

to (6), dX
dt

= V (t), still with X(0) = 0 and the restriction of stationarity on V . In this case (11)
becomes

1

2

d

dt
〈X2〉 = 〈V (t)X(t)〉 =

∫ t

0
〈V (t)V (τ)〉dτ =

∫ t

0
CV V (τ − t)dτ (15)

〈X2(t)〉 = 2
∫ t

0
dτ

∫ τ

0
dτ ′ CV V (τ ′) = 2

∫ t

0
dτ(t − τ)CV V (τ) (16)
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Note that the growth of 〈X2〉 comes from a correlation of V and X . These are correlated because
X includes a contribution from recent velocities which are correlated with present velocity.

It is easy to see how 〈X2〉 varies in the limits of short time and long time. From (16) it is
clear that for times much less than the scale on which CV V varies, i.e. for which CV V is essentially
constant,

〈X2(t)〉 ≈ V 2 t2 (17)

On the other extreme the velocity covariance is expected to vanish at time lags long compared with
the decorrelation time. From (15) it is clear that for times large compared with the decorrelation
time

〈X2(t)〉 ≈ 2t
∫ ∞

0
dτ CV V (τ) (18)

In accord with (12), a diffusivity can be defined as

κ(t) =
1

2

d〈X2(t)〉

dt
=

∫ t

0
dτ CV V (τ), κ∞ =

∫ ∞

0
dτ CV V (τ). (19)

According to (19) dispersion results from a random walk, possibly one with serially uncorrelated
velocity increments. Even if the time over which velocity is correlated approaches zero there is
dispersion with the asymptotic diffusivity given by κ∞ (19). Does this mean that diffusion can be
caused by arbitrarily short time scales? The covariance is related to the spectrum:

S(ω) =
1

2π

∫ ∞

−∞
dt C(t) exp(−iωt) (20)

from which we see that the diffusivity is

κ∞ =
1

2

∫ ∞

−∞
dt CV V (t) = π SV V (ω = 0). (21)

This shows that diffusion is caused by the lowest frequency of variability.
The classical random walk velocity covariance has an infinitesimal correlation scale and, con-

sequently, corresponds to a white spectrum. Perhaps for this reason, the random walk is some-
times said to be associated with velocities of arbitrarily short time scale. This is clearly not quite
the whole story since it is the low (zero) frequency component of particle velocity which leads to
diffusion. In the same way it will later be shown that that the error in estimating the mean of Y (t)
as 1

T

∫ T
0 dt Y (t) comes from variability of Y with frequencies of O(1/T ).

The relations (17–19) play an important role in our understanding of dispersion of material
by eddy-like motions in the ocean. The original discussion of these equations was by G.I. Taylor
in the 1921 Proc. London Math. Soc. 20. Freeland, Rhines and Rossby discussed their application
to the ocean in J. Marine Res. 33 in 1975. For times long compared with the decorrelation time
of V the variance 〈X2〉 grows approximately as 2κ∞t and, since X is the integral of V over many
decorrelation times, the pdf should still be Gaussian. In the limit of large times compared with
the decorrelation time we still expect the mean concentration to evolve according to a diffusion
equation if there is no advection.

4. Problems
(1) When is a particle’s position X normally distributed? If 〈X〉 = Ut and 〈X ′2〉 = 2κt then
when will the mean concentration of particles whose position is X obey the advection-diffusion
equation?
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(2) Suppose particle motion evolves according to

X(n) = X(n − 1) + ∆V (n) , V (n) = (1 − α) V (n − 1) + R(n) (22)

where R is independent of V (n), R has stationary statistics and is serially uncorrelated. Find the
general solution for V (n). Use it to find the diffusivity κ∞ = limt→∞

1
2

d
dt
〈X2(t)〉 in terms of α

and 〈R2〉. Will the concentration of X−particles obey a diffusion equation? Why?
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Answers to Random Walk problems
(1) When the position is the sum of many independent steps (discrete or continuous) the pdf of X
will be normal. In this case the mean tracer concentration, which differs from the pdf only by a
normalization, will be of the form

Γ(x, t) =
Q

[2π2κt]1/2
exp

[

−
(x − Ut)2

4κt

]

(23)

where Q is the total amount of tracer. Direct calculation shows this to evolve according to ∂tΓ +
U · ∂xΓ = κ∂2

xxΓ.
(2) The stated equation of motion and its solution are

V (n) = (1 − α) · V (n − 1) + R(n) =
n

∑

p=0

R(n − p) · (1 − α)p (24)

The covariance of the nth and mth velocity is

CV V (n,m) = 〈V (n)V (m)〉 =
n

∑

p=0

m
∑

p=0

〈R(n − p)R(m − q)〉 (25)

and since the different R(n) are uncorrelated (taking n ≥ m)

CV V (n,m) =
m

∑

q=0

(1 − α)|n−m|+2q〈R2〉 = (1 − α)|n−m|〈R2〉
m

∑

q=0

(1 − α)2q (26)

and that as n and m approach infinity

CV V (n,m) = (1 − α)|n−m|〈R2〉
∞
∑

q=0

(1 − α)2q = (1 − α)|n−m|〈R2〉
1

1 − (1 − α)2
(27)

The particle position is the sum X(n) =
∑n

p=0 V (p) so that the position variance is

X(n)2 =
n

∑

p=0

n
∑

q=0

[〈V (p)V (q)〉 = CV V (p, q) = CV V (p − q)] =
n

∑

p=−n

(n − p) · CV V (p) (28)

As shown above, as p → ∞ the covariance CV V (p) → 0 so that as n → ∞

〈X(n)2〉 → n
∞
∑

p=−∞

CV V (p) = n
〈R2〉

α(2 − α)





∞
∑

−∞

(1 − α)p = 2
∞
∑

p=0

(1 − α)p − 1 =
2

α
− 1



 = n
〈R2〉

α2

(29)
Thus even though the successive steps are serially correlated, the large time behavior of 〈X(n)2〉
is linear in time.


