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SAMPLING ERRORS
In the real world we can not obtain true statistics, but rather compute sample statistics. Our

data ensembles are inevitably finite. Before physical conclusions can be drawn from the sample
statistics the accuracy with which they approximate true statistics, computed from infinite ensem-
bles, must be determined. The difference between constructs developed from finite ensembles and
the analogous true statistic are called sampling errors.

1. Estimating statistics
The problem of finding a reasonable approximation of an average can be dealt with by esti-

mation theory. Consider true averages, denoted by 〈·〉, and sample averages, denoted by

{X} =
1

N

N
∑

n=1

Xn (1)

which differ from the true averages only in that N is finite. The notation langle·〉 and {·} will
retain the same meaning throughout what follows.

In estimation theory one follows a simple general procedure: (a) define a measure of good-
ness of an estimate (the beauty principle), (b) select a general method of estimating (the method
is the estimator), (c) use statistics to determine the typical quality of the estimator in terms of the
beauty principle, and (d) optimize the estimator to maximize the quality. As simple as this sounds,
it has four major limitations: (i) there is never an unambiguous beauty principle so that different
analysts may well obtain truly different optimal estimators, (ii) it is almost never possible to make
an exhaustive search of all plausible types of estimators so a true optimum can not be guaranteed,
(iii) the measure of quality is statistical and can only be determined when the complete process
of estimation is fully described and analyzed, and (iv) determination of quality requires knowl-
edge of some true statistics of the process which are generally no better known than the thing
being estimated. As was said before, real statistical analysis requires skill and creativity; it is not
cookbook.

Consider now the simplest problem of estimating the mean of X using (1), that is using
m̂ = {X}. To examine the performance of this estimator, imagine the same estimation process is
applied an infinite number of times in each of which there is a completely new (independent) set of
N observations Xn. It is then possible to find statistical descriptions of the resulting hypothetical
estimates by imagining many estimates m̂k and describe their statistics over an infinite ensemble
of realizations denoted by different k. Two of the obvious measures of badness are the mean error
and the mean square error

E1 = m̂ − 〈X〉, E2 = [m̂ − 〈X〉]2 (2)

respectively. There are three kinds of average in this: the true average X , the sample average {X}
involved in m̂, and the ·̄ average over many estimates of the sample average. But since this last
average involves an infinite number of realizations, it is really the same as the true average. For
example,

E1 = {X} − 〈X〉 = 〈{X}〉 − 〈X〉, E2 = 〈[{X} − X]2〉 (3)

Now it is a simple matter to substitute the definition of {X} from (1) and find

E1 =

〈

1

N

N
∑

n

Xn

〉

− 〈X〉 =
1

N

N
∑

〈X〉 − 〈X〉 = 0 (4)
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The estimator (1) is unbiased, that is the mean error is zero. Similarly,

E2 =
〈

{X}2
〉

− 〈X〉2 = N−2

N
∑

N
∑

n,m

〈XnXm〉 − 〈X〉2 = N−2

N
∑

n,m

〈X ′

nX
′

m〉 (5)

E2 depends on the covariance of X ′, and determining this is no simpler than estimating 〈X〉 (the
process whose errors are being analyzed) but fortunately it is not critical to do this accurately. The
simplest case is when the individual observations are independent, in which case E2 becomes

E2 = N−2

N
∑

n,m

δnm〈X ′2〉 = 〈X ′2〉/N = µ2/N (6)

Thus the root mean square error decreases as N−1/2 where N is the number of independent
observations. Since the mean error is zero, this is also the standard deviation of the error.

The parallel between accumulation of sampling errors and a random walk is strong. In each
case we are concerned with adding up random numbers that may or may not be serially correlated.
The rms size of the random walk sum grows as N 1/2 and, for fixed N and step variance, grows
more rapidly if sequential steps are well correlated. The sampling error is a sum normalized by
N−1 so the rms error decreases as N−1/2. For fixed N and sample variance, the error increases as
the correlation of successive samples increases.

Now consider estimating the variance µ2 = 〈X ′2〉. If the mean is known, then X ′ is easily
computed and the variance estimated as µ̂2 = {X ′2}. The results above are then directly applicable
and show this estimate to be unbiased with the variance E2 = (µ4 − µ2

2)/N where µ4 = 〈X ′4〉.
When the mean is estimated from the same data as the variance is to be found the problem is more
complicated and gives us as simple example of estimation theory.

Given the sample mean m̂ an appropriate estimate of the variance is

µ̂2 =
A

N

∑

n

[Xn − m̂]2 (7)

where the constant A is to adjusted to make a desirable variance estimator. There are two typical
measures of what makes a good estimator: bias (the mean error) and mean square error. Substitut-
ing X = X ′ +m and m̂ = m+ ε where a little calculation shows that error of m̂ is ε = 1

N

∑N
n X ′

n.
The bias and mean square error of the variance estimate are then

F1 ≡ 〈µ̂2〉 − µ2 = A
[

〈X ′2〉 − 2〈X ′ε〉 + ε2
]

− µ2 (8)

F2 ≡ 〈[µ̂2 − µ2]
2〉 =

[

A

N

]2
〈[

∑

m

X ′2
m − 2ε

∑

m

X ′

m + ε2

]〉

− 2µ2µ̂2 + µ2
2 (9)

The difficulty here is the error of the mean, ε, does not vanish and is correlated the data fluctuations
X ′

m.
Let us consider the case when the X ′s are serially independent (i.e. X ′

nX ′

m = δnmµ2 so that

〈ε2〉 ≡ N−2

N
∑

nm

〈X ′

nX
′

m〉 = 〈X ′ε〉 ≡ 〈X ′

nN
−1

N
∑

m

X ′

m〉 = µ2/N (10)

so that

〈µ̂2〉 = µ2A
N − 1

N
F1 = µ2

[

A
N − 1

N
− 1

]

(11)
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In calculating the mean square error F2 of µ̂2, the first term on the right of (9) is 〈µ̂2
2〉 and evaluating

it is nontrivial.

〈µ̂2
2〉 = A2N−2

[

∑

nm

〈X ′2
n X ′2

m〉 − 2N−1
∑

n

∑

kl

〈X ′2
n X ′

kX
′

l〉 + N−2
∑

nm

∑

kl

〈X ′

nX
′

mX ′

kX
′

l〉
]

(12)

Noting that the X ′ with different indices are independent, careful bookkeeping leads to

µ̂2
2 = A2N−2[N(N−1)µ2

2+Nµ4]−2 A2N−3[N(N−1)µ2
2+Nµ4]+A2N−4[3N(N−1)µ2

2+Nµ4]
(13)

It is very useful to be able to carry out the kind of calculation that leads to (13) and the student is
encouraged to understand the steps. Combining (11) and (13), the mean square error in (9) can be
evaluated:

F2 = A2N − 1

N3

[

(N 2 − 2N + 3)µ2
2 + (N − 1)µ4

]

− 2 A
N − 1

N
µ2

2 + µ2
2 (14)

For the case of Gaussian X it is easy to show that µ4 = 3µ2
2 and

F2 = A2µ2
2

(N − 1)(N + 1)

N2
− 2A

(N − 1)

N
µ2

2 + µ2
2 (15)

We are now in a position to ask “What is the best value for A to use in estimating variance?”
The most widely used choice is obtained by requiring the estimate be unbiased, that is 〈µ̂2〉 = µ2 or
F1 = 0; this corresponds to A = N

N−1
. The “intuitive” variance estimator µ̂2 = {(X − {X})2},

corresponding to A = 1, is little used because people seem to insist on using the zero-bias esti-
mator. This is usually more a matter of style than substance for the following reason. The bias is
much smaller than the spread for any reasonable estimator. According to (11) the choice A = 1,
for example, makes 〈µ̂2〉 − µ2 of order 1/N whereas from (15) F2 is also O(1/N) so that the rms
error 〈(µ̂2 − µ2)

2〉1/2 is order 1/
√

N . Driving the bias to zero increases the mean square error F2

compared with its minimum value. Indeed the minimum square error can be obtained by adjusting
A to minimize F2 in (15) giving A = N

N+1
. The minimum mean square error and the associated

mean error (using A = N/N + 1) are

F2 =
2µ2

2

N
+ 1 F1 = −2µ2

N
+ 1 (16)

Given the results for the two beauty principles zero bias and minimum mean square error, there is
little reason not to simply use the intuitive estimator based on A = 1.

It is important to step back and take note of a few general facts. First, the process of estimating
sampling errors involves us in an endless chain. To estimate the uncertainty in the mean we need
to know the variance. To estimate the uncertainty in a sample variance we need to know higher
moments. This chain can only be broken with a closure hypothesis that asserts specific connections
between moments. Note that the Central Limit tendency associated with the number of terms in
sample sums going to infinity does not help. One needs assumptions about the distribution of
individual observations, not the sample average. Second, sample errors all depend on true statistics
which, of course, will never be known. Thus describing sample errors always involves a “what
if” story like “If the true statistics were ...... then the sample errors would be ..... .” There is
fundamentally no way around this and a good analysis is one with a plausible “If the true statistics
were ....” story that is backed up with observations where possible. Third, the particular construct
(formula) used to approximate true statistics can be “tuned” to be optimal according to various
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different beauty principles. The particular goodness criterion should depend on the problem but
samll bias and small mean square error are pretty common and useful criteria. The rule that one
should divide by the number of samples minus the number of constraints (a) applies only to zero
bias estimators and (b) makes assumptions about the distribution of variables. In general the error
standard deviation of an estimate is a larger order in N than the mean error (bias). Some of us
think it makes more sense to minimize the large error than the small one. Fourth, precision is
neither possible nor necessary. For example, the error of an estimated mean, m̂ − m, is

√

µ2/N .

All sensible variance estimators give rms values of the error µ̂2−µ2 of order µ2/
√

N which would
introduce a fractional error of O(1/

√
N) into the estimate of typical m̂−m. Messing around with

the variance estimator makes an O(1/N) correction to the estimate of µ2. Thus if N is large you
can bootstrap your way to good answers and the precise formulas used won’t matter. If N is not
large then no statistical question can be answered well and fooling around with O(1/N) corrections
(like zero bias vs. minimum mean square error) are not going to fix up much of anything important.

2. Confidence limits
Confidence limits describe the range of true values consistent with the observation. Once

the distribution function of sample values, here m̂ or µ̂2, are known for each true value, here m
or µ2, it is simple to place confidence limits on the estimate. For the case of mean values, for
example, confidence limits describe the range of true means, m, which are likely to have led to the
observation m̂ = mOBS . Specifically, the upper 100 · (1 − 2ε) confidence limit is the largest true
value for which there is an ε chance of getting an estimate as small, or smaller than, that observed.
The lower confidence limit is the smallest true value that would give an observation as large as
obtained with probability ε.

To make this precise, consider the general case of estimating a parameter m with an estimator
m̂ (the process by which estimates are made) which produced the value mOBS . Let Fm̂(x|m) be
the distribution function of estimates m̂ when the true parameter is m (i.e. the probability that an
observation will be less that x is Fm̂(x|m)). The lower confidence limit mL and the upper limit
mU are then defined by

Fm̂(mOBS|mL) = 1 − ε, Fm̂(mOBS|mU) = ε (17)

Simply put, these say that for small ε very few observations are as large as mOBS if m < mL and
that almost all observations are greater than mOBS if m > mU .

First consider confidence limits for m̂ = {X} By combining (4) and (6) with the results of
the Central Limit Theorem the probability of an estimate being in error by any specified amount
is easily found. The Central Limit Theorem says that if N is large then the pdf of (1) will be
Gaussian. In practice the restriction on large N is not severe for two reasons: (i) except at the tails
of low probability, the pdf of a finite sum quickly approaches the Gaussian form for fairly small N,
and (ii) if the variable X is approximately normally distributed then this approach is accelerated
(if X is normally distributed then so is {X} for all N ). The normal distribution is specified
by two parameters and (4) says the mean error vanishes and (6) says that the error variance is
σ2 = 〈X ′2〉/N . The distribution function Fm̂(x|m) is

Fm̂(x + m|m) =
∫ x

−∞

dy [2πσ2]−1/2 exp[−y2/2σ2] = Q(x/σ) (18)

Q(x) =
∫ x

−∞

dy [2π]−1/2 exp[−y2/2] (19)

Some values of Q(x) are tabulated here. Note that Q(−x) = 1 − Q(x).
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x 0.0 1.0 1.28 1.64 1.96 2.33 2.58 3.09
Q(x) 0.5 0.84 0.90 0.95 0.975 0.99 0.995 0.999

Note that a 2σ error occurs about 4% of the time and a 3σ error occurs only about 0.2%.
Remember that Q(x) is the probability of a deviation from the mean not exceeding x so that the
probability of the absolute value exceeding x > 0 is 2(1 − Q).

Because the shape of Fm̂(x|m) does not depend on m it is easy to find the confidence limits.
For example, from the table we see there is less than a 1% chance of obtaining an observation
mOBS if m < mOBS −2.33σ and less than a 1% chance of obtaining mOBS if m > mOBS +2.33σ;
thus m̂ ± 2.33σ are the 98% confidence limits. These are sometimes called the 2% confidence
limits (they are not the 99% or 1% limits). The discussion of the confidence limits of the sample
mean may seem cumbersome, but this complexity is necessary to describe the general concept of
confidence limits and to find them in more complicated examples.

Now consider placing confidence limits on an estimate of a variance when X is normally
distributed and the mean is known and has been subtracted. The estimate µ̂2 is then approximately
the sum of N squares of identically and normally distributed variables with zero mean and variance
µ2/N . Formally

N µ̂2

µ2

=
N

∑

m=1

x2 (20)

where the x are normally distributed, 〈x〉 = 0, and 〈x2〉 = 1. The sum of the N such squares of
Gaussian variables is called a CHI squared variable with N degrees of freedom. For large N
this becomes a normally distributed variable with mean N and variance 2N (since 〈x4〉 = 3). The
distribution of χ2

N differs strongly from a Gaussian for N up to O(10).
Let the distribution function of a χ2

N variable be defined so that Fχ2

N

(y) is the probability
that χ2

N < y. This function is given in many math tables for various N and is tabulated below
for N = 10. Also shown is the value of χ2

10 corresponding to F if χ2
N were normally distributed

with mean N and variance 2N . You will note that the more common occurrences correspond

F (y) 0.01 0.05 0.10 0.90 0.95 0.99
y, χ squared 2.56 3.94 4.86 15.99 18.31 23.21

y, normal -.42 2.67 4.28 15.72 17.33 20.42

well between the exact distribution and the normal distribution, but the tails of the distribution are
significantly different (the normal distribution indicates a 1.5% probability of a negative sum of
squares).

Since N µ̂/µ is distributed like χ2
N , it is simple to find the confidence limits for µ̂ from (17).

Since Nµ̂/µ > 18.3 only 5% of the time, the lower 90% confidence limit is µL = (10/18.3 =
0.55)µOBS . Similarly Nµ̂/µ will be smaller than 3.94 only 5% of the time so the upper limit
is µU = (10/3.94 = 2.54)µOBS . The asymmetry of these limits is the result of the convoluted
question they answer: “How far from µOBS could µ be and still be apt to give the observed value?”
Since the variability of µ̂ increases with µ, the confidence limit in the positive error direction will
be farther from the sample than is the negative error limit. The asymmetry of the chi-squared
probability density actually counteracts the asymmetry caused by the increase in variance of with
increasing true value. To see this the student should repeat the confidence limit calculation using
the symmetric Gaussian form for Q.

3. Correlated observations
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The discussion above provides the method for deducing sampling errors for statistical esti-
mates when the observations are independent. In this case the “size” of the sample is simply N ,
the number of independent observations. Now consider the more likely case that the observations
are correlated. This happens when the observations are more closely spaced, in time and/or space,
than the appropriate correlation scale.

Consider first the estimator m̂ of the mean m in (1). This will be unbiased regardless of
the correlation of observations. The mean square error (5), however, depends on the covariance
〈X ′

nX
′

m〉. In arriving at (6) it was assumed that this vanishes unless n = m. Suppose instead that
X has stationary statistics and the samples Xn are equally spaced so that 〈X ′

nX
′

m〉 = 〈X ′2〉ρ(n −
m) where ρ(n − m) is the correlation of observations separated by the interval n − m. A little
manipulation of (5) then shows that

E2 = µ2N
−2

N
∑

n

N
∑

m

〈X ′

nX
′

m〉 = µ2N
−1

n=N
∑

n=−N

[

1 − |n|
N

]

ρ(n) (21)

If the observations are uncorrelated then the only nonzero term in the sum is ρ(0) = 1 and (5)
is recovered. Otherwise the error may be larger or smaller, depending on the sum over ρ(n).
Correlation of observations means that the real size of the sample is generally less than the number
of observations N .

The extreme of observation correlation comes from a continuous time series. For this case the
mean would be estimated as

1

T

∫ T

0

dt X(t) (22)

which will be unbiased. The mean square error would be

E2 =
1

T 2

∫ T

0

∫ T

0

dt1 dt2〈X ′(t1)X
′(t2)〉 = µ2

1

T

∫ T

−T
dt

[

1 − |t|
T

]

ρ(t) (23)

where ρ(t) is the serial correlation of two observations separated by time t.
Equations (21–23) tell how to find the equivalent number of independent samples, NE , pro-

vided by a record of correlated data. These say

E2 = µ2/NE, NE =
N

∑N
−N [1 − |n|/N ]ρ(n)

or NE =
T

∫ T
−T dt [1 − |t|/T ] ρ(t)

(24)

In the limits that N and T go to infinity (that is are much larger than the value required to make
the correlation ρ vanish), the equivalent degrees of freedom are

NE =
N

∑N
−N ρ(n)

or NE =
T

∫ T
−T dt ρ(t)

(25)

It usually takes several samples or a specified continuous sample time to gain as much information
from a serially correlated series as is provided by a single independent sample. It is, however,
possible that the serial correlation of observations will help averaging and NE will be larger than
N . If, for example, the process were narrowband noise centered around a period of T , the average
4 equally spaced samples at t0, t0 + T/4, t0 + T/2 and t0 + 3T/4 would be very much better than
a much larger sample taken at irreularly spaced intervals. If the process had zero bandwidth, the
sample mean would be exact.

In order to find the sampling errors of higher moments it is necessary to estimate even higher
order moments of the process, as we did in going from (14) to (15). If it is assumed that the



Davis notes-SIO 221B 7

process is joint-normally distributed then results are obtained from the two-time correlation, or for
stationary processes from the time-lagged correlation.

Much of oceanographic analysis concerns the relation between different variables. Conse-
quently, it is worth considering the errors in a sample covariance. Let the sample covariance be

ĈXY = {XY } =
1

T

∫ T

0

X(t) Y (t) dt (26)

If CXY is the true covariance then Y = αX + Z where Z is the unexplained part of Y and
α = CXY /〈XX〉. Hence

ĈXY =
{X2}
〈X2〉 CXY +

1

T

∫ T

0

X(t)Z(t)dt . (27)

and a measure of the mean square error is

E2 = (ĈXY −

{X2}
〈X2〉 CXY )2 = T−2

∫

ds
∫

dt〈X(t)X(s)Z(t)Z(s)〉 (28)

While we know that X and Z are uncorrelated, they may not be independent and we can not
proceed further. Thus sampling error estimates must be based on the model that X and Z are
independent. It is typical that sampling error estimates are based on such implicit assumptions. If
X and Z are independent

E2 = T−2

∫

ds
∫

dtCXX(t − s)CZZ(t − s) ≈ 1

T

∫

∞

−∞

dtCXX(t)CZZ(t) (29)

The infinite integral of the product CXXCZZ has the units of time and represents the extra record
length required to obtain another effectively independent sample. Thus in the spirit of the “effective
degrees of freedom” in (24–25), for a sample covariance

E2 =
〈XX〉〈ZZ〉

NE

, NE =
N

∑

∞

−∞
ρXX(k)ρZZ(k)

, or NE =
T

∫

∞

−∞
ρXX(t)ρZZ(t)dt

. (30)

where ρXX and ρZZ are time lagged correlations. Recall that Z is the part of Y which is uncorre-
lated with X (and assumed independent of it) so that ZZ is the unexplained variance of Y .


