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9.  Wavelets 
 
 Wavelet analysis developed in the largely mathematical literature in the 1980's 
and began to be used commonly in geophysics in the 1990's.  Wavelets can be used in 
signal analysis, image processing and data compression.  They are useful for sorting out 
scale information, while still maintaining some degree of time or space locality.  
Wavelets are used to compress and store fingerprint information by the FBI.  Because the 
structure functions are obtained by scaling and translating one or two "mother functions", 
time-scale wavelets are particularly appropriate for analyzing fields that are fractal.  
Wavelets can be appropriate for analyzing non-stationary time series, whereas Fourier 
analysis generally is not.  They can be applied to time series as a sort of fusion between 
filtering and Fourier analysis.  Wavelets can be used to compress the information in two-
dimensional images from satellites or ground based remote sensing techniques such as 
radars.  Wavelets are useful because as you remove the highest frequencies, local 
information is retained and the image looks like a low resolution version of the full 
pictures.  With Fourier analysis, or other global functional fits, the image may lose all 
resemblance to the picture, after a few harmonics are removed.  This is because wavelets 
are a hierarchy of local fits, and retain some time localization information, and Fourier or 
polynomial fits are global fits, usually. 
 
 In general, you can think of wavelets as a compromise between looking at digital 
data at the sampled times, in which case you maximize the information about how things 
are located in time, and looking at data through a Fourier analysis in frequency space, in 
which you maximize your information about how things are localized in frequency and 
give up all information about how things are located in time.  In wavelet analysis we 
retain some frequency localization and some time localization, so it is a compromise. 
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Figure.  1.  In the time domain we have full time resolution, but no frequency localization 

or separation.  In the Fourier domain we have full frequency resolution but no time 
separation.  In the wavelet domain we have some time localization  and some 
frequency localization. 
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9.1  Wavelet Types 
 
 According to Meyer(1993), two fundamental types of wavelets can be considered, 
the Grossmann-Morlet time-scale wavelets and the Gabor-Malvar time-frequency 
wavelets.  The more commonly used type in geophysics is probably the time-scale 
wavelet.  These wavelets form bases in which a signal can be decomposed into a wide 
range of scales, in what is called a "multiresolution analysis".  From this comes the 
obvious application in image compression, as one can call up additional detail as required 
until the exact image at the original resolution is reconstructed.  The intervening coarse 
resolution images will look like the full resolution one, just fuzzier.  This is not true in 
general of Fourier analysis, where throwing out the last few harmonics can cause the 
picture to change dramatically.   
 
 Time-scale wavelets are defined in reference to a "mother function" (t)  of some 
real variable t.  The mother function is required to have several characteristics:  it must 
oscillate, and it must be localized in the sense that it decreases rapidly to zero as |t| tends 
to infinity.  It is also very helpfult to require that the mother function have a certain 
number of zero moments, according to: 
 

 0 = (t) dt =. .. = t m 1 ( t)dt  (9.1) 

 
The mother function can be used to generate a whole family of wavelets by translating 
and scaling the mother wavelet. 
 

 (a,b )(t) =
1

a

t b

a
 

 
 

 

 
 , a > 0, b .  (9.2) 

 
Here b is the translation parameter and a is the scaling parameter.  Provided that (t)  is 
real-valued, this collection of wavelets can be used as an orthonormal basis.  The 
coefficients of this expansion can be obtained through the usual projection.  
 

 (a,b) = f ( t) (a,b)( t) dt  (9.3) 

 
These coefficients measure the variations of the field f(t) about the point b, with the scale 
given by a.  Wavelet analysis of this type can be performed on discrete data using 
quadrature mirror filters and pyramid algorithms.  It is also possible sometimes to 
compute the transform using a Fourier transform technique. 
 
 Time-frequency wavelets are constructed with the idea that you take a wave, 
cos( t + ) , divide it into segments, and keep only one (Gabor 1946).  This leaves a 
"wavelet" with three parameters: a starting time, an ending time, and a frequency.  Recent 
innovations have provided more practical algorithms for the time-frequency wavelet that 
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are useful with discrete data.  You might imagine that such a representation would be 
very useful in music and speech coding. 
 
 The trick in using wavelets is to find a set of them that provides a description that 
is optimal in some sense to the problem at hand.  If wavelet analysis in general, or the 
particular set chosen, is not well-suited to the problem at hand, they can be no help or, 
worse, lead to deeper confusion.  For the non-expert like us, who just wants to get a 
useful representation, one is probably restricted to choosing from among a library of 
established wavelet bases, and most probably from among those for which software is 
already written.  This library is growing, as are the techniques for deteriming whether an 
appropriate representation has been chosen.  Matlab has a wavelet toolbox, which 
includes Haar, Daubechies, Biorthogonal, Coiflets, Symlets, Morlet, Mexican Hat and 
Meyer  wavelets. 
 
 We focus here in these notes on discrete wavelets and the discrete wavelet 
transform (DWT) and their applications.  Wavelets are basis sets for expansion which, 
unlike Fourier series, have not only a characteristic frequency or scale, but also a 
location.  They can be orthogonal, biorthogonal, or nonorthogonal.  So we imagine first 
that we have some sort of linear series expansion of a signal x(t).   
 

 x(t) = i

i

i  (9.4) 

 
Normally we would wish that i  form a complete orthogonal set on the space in which x 
is defined, so that any x can be expressed in terms of this basis set.  When a Fourier 
Series expansion is performed the resulting coefficients i  can be used to describe the 
distribution of the variance in frequency space by computing the power spectrum, so that 
a scale separation is performed, but the information about the behavior of particular 
scales as a function of time is lost.  One can get around this partially by computing a 
series of short term Fourier transforms (STFT) on series of length T, which might be 
shorter than the total length of record, but long enough to discriminate the frequency of 
interest from others.  These short records could be partially overlapping, so that the scale 
analysis could be plotted two-dimensionally in frequency-time coordinates, so that the 
temporal behavior of the variance in the frequencies of interest could be studied.   
 
9.2  The Haar Wavelet 
 

Haar(1910) and others were seeking functional expansions that would converge to 
explain other functions that were not the sine and consine series of Fourier(1807).  He 
sought an orthonormal system hn(t) of functions on the interval [0,1] such that for any 
function f(t), the series, 

 

 f (t) = f ,hn hn t( )  (9.5) 

 



ATMS 552 Notes:     Section 9:     Wavelets D.L. Hartmann  page  

Copyright 2008   Dennis L. Hartmann 2/29/08  2:01 PM 

243

243

would converge uniformly.  The angle brackets indicate a suitably defined inner product 
on the interval [0,1].  Haar began with the initial function, 
 

 h(t) =

1.0

1.0

0.0

 

 
 

 
 

[0, 1 / 2]

[1 / 2, 1]

elsewhere

 (9.6) 

 
Building on this basic function Haar defines his sequence of expansion functions 
according to, 
 

 n = 2 j + k j 0, 0 k 2 j  (9.7) 
 

 hn t( ) = 2
j / 2 h 2 j t k( )  (9.8) 

 
each of these functions is supported (has nonzero values) on the dyadic interval, 
 

 In = k2 j , (k +1)2 j[ ]  (9.9) 

 

which is included in the inverval [0,1] if 0 k 2 j .  To complete the set, one must add 
the function h0 t( ) =1   on the inverval [0,1].  The series hn t( )   then forms an orthonormal 
basis on [0,1].  By looking carefully at (9.7)-(9.9) one can see that the series is the basic 
step function repeated on intervals that decrease in scale and increase in number by the 
factor of two at each level, where j is the level index and k is the number of functions of a 
given scale necessary to span the interval [0,1]. 

 
Let's consider the Haar expansion of a time series to illustrate the concept of 

discrete wavelet analysis in a very simple form.  The discrete Haar wavelet is a two point 
sum and difference representation.  In discrete work, it is handier to start with the 
smallest scale and work upward to the bigger ones.  For the discrete Haar wavelet to 
converge, the total number of data points in the time series must be a power of two.  The 
basis functions are given by, 

 

 2k n[ ] =

1

2
n = 2k, 2k +1

0 otherwise

 

 
 

 
 

2k+1 n[ ] =

1

2
n = 2k,

1

2
n = 2k + 1

0 otherwise

 

 

 
  

 

 
 
 

 (9.10) 

 
Where n is the time series index.  Even and odd (2k and 2k+1) indexed functions are, 
respectively, sum and differences of two adjacent time points, with the factor of one on 
square root of two thrown in to make the basis set orthornormal.  Successive even and 
odd functions are just translations by an even number of time steps of the other even and 
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odd functions.  The individual functions are thus very localized to two adjacent time 
points.   

 
Since the Haar functions are orthogonal, we can derive their coefficients using the 

relation, 
 
 i = i , x(t)  (9.11) 

 
where the angle brackets indicate a suitably defined inner product. 

 
It may be easier to see how this is all working by considering how (9.11) looks 

when expressed in matrix notation, and using the abbreviation a =
1

2
. 
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 (9.12) 

 
We can think of y1 and y2 as the time series of the coefficients of the even and 

odd Haar wavelets, respectively.  These have only half the time resolution of the original 
series.  You can think of y1 as a low-frequency representation of x(t) and y2 as the high 
frequency details.  Often in wavelet analysis literature, the smooth function (a,a) would 
be called the scaling function , and the wavy one (a,-a) would be called the wavelet .  
The projection into the coefficient space of the two Haar functions is equivalent to 
filtering followed by "down sampling", by taking only every other point of the filtered 
time series. The Haar transform is an example of a two-channel filter bank.  It sorts the 
original series into two filtered data sets.  The Haar filter functions are members of a 
special class of filter function pairs called a quadrature mirror filter pair.  After the 
filtering is done the sum of the energies (or variances) in the two filtered time series is 
equal to the variance in the original time sereis.  

 

 y1
2
+ y2

2
= x 2  (9.13) 
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Since we are thinking of a wavelet transform as a filtering operation, now is a 
good time to think about the scaling achieved by this filtering process.  Remember, from 
the previous chapter on filtering of time series, how we determine the frequency response 
of the filter from its coefficients.  Since this is a non-recursive filter as it stands, we know 
from the time-shifting theorem that the Fourier transform of the data F(f), will be 
modified by being multiplied by the transfer function of the filter, which is given by, 

 

 H( f ) = an
n=0

M

e i2 nf  (9.14) 

 
The squared response function shows how the filter process would affect the 

power spectrum.  As an exercise, one may show that the squared response function for 
the scaling (a,a) and wavelet (a,-a) filtering operations are, respectively, where 
a = 1/ 2 , then 

 

 H( f ) scaling
2

=cos2( f ) and H( f )wavelet
2

= sin2( f )  (9.17) 

 
From these formulas one can see that the squared response functions are 

complements of eachother, so that the variance that is rejected by one is the variance that 
is passed by the other.  This is the required characteristic of quadrature mirror filters, and 
will result in the preservation of power as the expansion in these wavelets continues. 
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The Haar wavelet representation has the advantage of very good time localization, 

but the frequency resolution is minimal.  Also, it is not smooth.  It is not a very attractive 
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wavelet basis.  You could get much better frequency resolution by using sinc functions as 
the basis set, but to get very fine frequency resolution you would end up with very poor 
time resolution.  A compromise is needed. 

 
Pyramid Scheme: 

 
Applying the Haar transform reduces the original N data point time series x(t) into 

two time series of length N/2, which are y1 and y2 , respectively.  One of these contains 
the smoothed information and the other contains the detail information.  The smoothed 
one could be transformed again with the Haar wavelets again, producing two time series 
of length N/4, with smoothed and detail information, and so on, keeping the details and 
doing an additional transform of the smoothed time series each time.  If the original time 
series was some power of 2, N=2n, then this process, called a pyramid algorithm, would 
terminate when the last two time series were the coefficients of the time mean and the 
difference between the mean of the first half of the time series and the last half of the 
time series.  The number of coefficients at the end would total N, and would contain all 
of the information in the original time series, organized according to scale and location, 
as defined by the Haar wavelet family.  The original mother functions of (1,1) and (1,-1) 
on an interval of two time points are stretched, or dilated in factors of 2 to create a 
sequence of daughter wavelets with increasingly large scale. 

 
Let’s suppose we started with a time series of 8 data, and performed successive 

Haar transforms on this time series.  The diagram below is intended to give some idea of 
how the original data would be transformed into a representation in Haar functions using 
the pyramid scheme.  The notation is a little primitive.  The first subscript indicates 
whether it is the first-smoothed, or second-detailed Haar function coefficient.  The second 
subscript indicates the total span of the wavelet-the number of time points it stretches 
over.  The original set span two data points, but the span doubles every time the 
transform is applied to the smoothed transformation from the previous level of the 
pyramid.  The number in parenthesis indicates the approximate time point at the center of 
the wavelet in question.  This is the time we would plot the coefficient at, if we wanted to 
see how this particular scale was evolving in time. 
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  (9.16) 
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At the end of the scheme we have the coefficients of the Haar function that is the same at 
all 8 points, y18 , and the coefficient of the Haar function that is positive for the first 4 
times and negative for the last 4 times y28 , which is the last bit of detail. The time at 
which these are valid is right in the center of the time series.  Each level represents a 
particular scale, but in the case of the Haar wavelet, the scale separation is crude.  We can 
reconstruct the original time series from the Haar coefficients if we want. This discussion 
of the Haar wavelet set introduces the concept of multiresolution.  The wavelet basis is 
capable of localizing signals in both time and frequency simultaneously.  Of course there 
is an uncertainty principle at work, because if we want to isolate frequencies very exactly, 
then we must give up time localization (sinc wavelet), and if we want to localize very 
finely in time, then we must give up on precise frequency localization (Haar wavelet). 
 
In seeking other possible basis function sets on which we would like to expand we 
consider the following desirable characteristics: 
 
(1)  Good localization in both time and frequency (these conflict so we must 
compromise) 
(2)  Simplicity, and ease of construction and characterization 
(3)  Invariance under certail elementary operations such as translation 
(4)  Smoothness, continuity and differentiability 
(5)  Good moment properties, zero moments up to some order. 
 
 
9.3  Daubechies Wavelet Filter Coefficients: 
 
From the example of the Haar wavelet, we can see that a wavelet transform is equivalent 
to a filtering process with two filters that are quadrature mirror filters and divide the time 
series into a wavelet part, which represents the detail, and another smoothed part.  
Daubechies(1988) discovered an important and useful class of such filter coefficients.  
The simplest set has only 4 coefficients (DAUB4), and will serve as a useful illustration.  
Consider the following transformation acting on a data vector to its right. 
 

 

c0 c1 c2 c3
c3 c2 c1 c0

c0 c1 c2 c3
c3 c2 c1 c0 • •

• • c0 c1 c2 c3
c3 c2 c1 c0

c2 c3 c0 c1
c1 c0 c3 c2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (9.17) 

 
The action of this matrix is to perform two convolutions with different, but related, 
filters, c0,c1,c2,c3( )  =H  and c3, c2,c1, c0( )  =G, each resulting time series of filtered 
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data points is then decimated by half, so that only half as many data points remain, then 
both filtered time series, thus decimated, are interleaved.  We can think of H as the 
smoothing filter and G as the wavelet filter.  They produce the smooth and detail 
information, respectively.  The filter G is chosen to make the filtered response to a 
sufficiently smooth input as small as possible, and this is done by making the moments of 
G zero.  When p moments are zero, we say that G satisfies an approximation condition of 
order p.   
 
If we require an approximation condition of order p=2, then the coefficients for the 
DAUB4 wavelet must satisfy,  
 
 c3 c2 + c1 c0 = 0  (9.18) 
 0c3 1c2 + 2c1 3c0 = 0  (9.19) 
 
For the transformation of the data vector to be useful, one must be able to reconstruct the 
original data from its smooth and detail components.  This can be assured by requiring 
that the matrix (9.17) is orthogonal, so that its inverse is just its transpose.  In discrete 
space, this is the equivalent of the orthogonality condition for continuous functions.  The 
orthogonality condition places two additional constraints on the coefficients, which can 
be derived by multiplying (9.17) by its transpose and requiring that the product be the 
unit matrix. 
 
 c3

2
+ c2

2
+ c1

2
+ c0

2
= 1  (9.20) 

 c3c1 + c2c0 = 0  (9.21) 
 
These four equations for the coefficients have a unique solution up to a left-right reversal.  
DAUB4 is only the simplest of a family of wavelet sets with the number of coefficients 
increasing by two each time (4, 6, 8, 12, . . . 20, . . .).  Each time we add two more 
coefficients we add an additional orthogonality constraint and raise the number of zero 
moments, or the approximation condition order, by one.  Daubechies(1988) has tabulated 
the coefficients for lots of these, and they can be inserted into computer programs 
provided by Press, et al.(1992).   
 
The discrete wavelet transform proceeds by the pyramid algorithm.  A coefficient matrix 
like (9.17) is applied hierarchically.  After the first transform of a data vector of length N, 
the detail information is stored in the last N/2 elements of the transformed vector, and 
another transform of the N/2 smooth components is performed to provide a detail vector 
and a smooth vector each of length N/4.  Then the detail at this level is stored and another 
transformation of the N/4 smooth vector is performed.  This continues until only one 
smooth coefficient and one detail coefficient remain, at which point N coefficients of the 
transformed coefficient vector have been obtained.  We can illustrate this process with an 
initial vector of length N=8. 
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 (9.22) 

 
If the original data were a higher power of two, there would be more stages in the 
pyramid transformation, but the ending point is always two detail coefficients and two 
smoothed coefficients for the final level.  The d's are called "wavelet coeffients".  The 
final S coefficients could be called "mother-function coefficients", or mother and father 
coefficients,  but are often also called wavelet coefficients.  Since each stage of the 
process is an orthogonal linear operation, the sum of all these transformations is also an 
orthogonal operation.  To invert the procedure and change the coefficients back to the 
original data vector, one simply reverses the process, using the transpose of the 
transformation matrix at each level of the pyramid.   
 
Although the pyramid scheme only requires the coeffients of the fundamental quadrature 
mirror filter, the structure of the wavelets can be reconstructed by placing a one in the 
element of the coefficient vector for the wavelet structure you want, place zeros in all 
other locations, and then do the inverse transform to produce the physical space 
representation of the wavelet structure.  One can easily see by taking the transpose of 
(9.17) and operating on vectors with ones in various elements, that the wavelet structure 
at the first level of wavelet detail is just the wavelet filter coefficients themselves.  Higher 
up the pyramid structure the wavelets take on more details that are not obvious from the 
coeffients alone.  For example the following diagram shows the DAUB4 wavelet 
structures from a transformation of length 1024 corresponding to coefficients  1,2,3 and 
4.  These are the father, mother and first two wavelets- the largest scale wavelets, 
corresponding to the lowest coefficients for DAUB4 on 1024.  The DAUB4 wavelet has 
kinks where the first derivitive does not exist, but it exists "almost" everywhere.  The 
mother and father have the same scale but different shapes, with the father being the 
smoother one and the mother the basic wavelet.  The 3 and 4 wavelets are the first born.  
They have the same structure, but are shifted in location so as to be orthogonal.  All 
subsequent children have this characteristic, but decrease in scale by a factor of 2 and 
increase in number by a factor of 2. 
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Let’s look at the grandchildren.   The wavelet for coefficient 514 is of the smallest 

scale and is localized near the beginning of the time series.  The structure is just the filter 
coefficients shifted in time into the beginning of the data a little.  Lower coefficients 
correspond to wavelets with progressively doubled scale, and their structures take on a 
little more detail at this order of approximation(DAUB4).  We show only the left part of 
the 1024 vector space, since this is where these wavelets have amplitude.  We show here 
the wavelets for coefficients 514, 258, 130 and 66.  These are all located near the 
beginning of the time series, but each represent scales that differ by factors of 2.  To 
obtain the next wavelet in each level, you would keep the same structure but shift it to the 
right by 2, 4, 8, and 16 time units, respectively. 
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Higher order wavelets, such as DAUB8, shown below have higher order 
continuous derivatives.  They are not quite as local as a lower order Daubechies wavelet 
set, since the wavelet of smallest scale is supported over a larger number of data points.    
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The DAUB-20 wavelet produces even more smoothness, and less localization. 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 200 400 600 800 1000

Daubechies-20 Wavelets on 1024

12
34

W
av

el
et

 A
m

pl
itu

de

index

 



ATMS 552 Notes:     Section 9:     Wavelets D.L. Hartmann  page  

Copyright 2008   Dennis L. Hartmann 2/29/08  2:01 PM 

253

253

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80

Daubechies-20 Wavelets on 1024

66
130
258
514

W
av

el
et

 A
m

pl
itu

de

index

 
 
9.4 Wavelet Types and Properties 
 

TBD 
 

9.5 The Inverse Problem in Music:  Would Wavelets really help? 
 

Suppose you are an ethnomusicologist and you have recorded the tunes and 
harmonies of a primitive, but musical tribe in the central Amazon Basin.  You want to 
convert the recording into a score based on the western system of music.  This is the 
inverse problem in music.  You have the voiced music, but you want it converted into 
musical notation.  The forward problem would be if you had sheet music and you wanted 
to create the sound.  This is a good problem in digital signal processing and time series 
analysis. 

 
In some of the references for wavelets  music is used as an example of a kind of 

mixed time-frequency multiresolution problem for wavelets.  However, most of the 
dyadic wavelet bases resolve frequences that differ by factors of two.  That is a whole 
octave, and so is too coarse frequency resolution to be useful for music scoring.  As we 
shall see, to get the required frequency resolution to resolve the individual notes within 
an  octave, one does better to just use Fourier Analysis.  
 
The Well-Tempered Clavier: 
 

The western musical scale is divided up into octaves, the frequencies of the 
succeeding octaves differ by factors of 2.  Each of these octaves is divided into 12 
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semitones, whose frequencies have the ratio ~1.05946 = , so that 12
= 2 , or = 212 .  

So all we need to do is pick the frequency of some reference note and we can construct 
the frequencies of the entire chromatic scale of music.  Two tunings are used.  The classic 
is the ‘Concert A’; the A above middle C is tuned to 440 Hz.  Computer musicians prefer 
to tune middle C to 256 Hz.  If you do an analysis based on powers of two, more of the 

notes are generated or picked out precisely by the analysis (256 = 28).  These two tunings 
are not compatible, since they differ in most places by close to half a step.  If you have 
defined your reference note and frequency, then you can compute the frequencies of all 
the other notes in the system from the following relationship. 

 

 fm+ n = 2
log2 fm+n /12( )  

 
where fm  is the reference frequency, and n is the number of half steps from the reference 
frequency to the note of which you want the frequency fm+ n .  Below are the four octaves 
about middle C for the Concert A tuning. 
 
Table:  The frequencies of the four octaves about middle C for the Concert A tuning.  In 
each octave an index of half steps with middle C defined as zero is given, along with the 
frequency in Hertz (cycles per second) and the corresponding note name. 
 

C Below C 
-24 65.406 C 
-23 69.296 Db 
-22 73.416 D 
-21 77.782 Eb 
-20 82.407 E 
-19 87.307 F 
-18 92.499 Gb 
-17 97.999 G 
-16 103.826 Ab 
-15 110.000 A 
-14 116.541 Bb 
-13 123.471 B 
-12 130.813 C 
 

Below C 
-12 130.813 C 
-11 138.591 Db 
-10 146.832 D 
-9 155.563 Eb 
-8 164.814 E 
-7 174.614 F 
-6 184.997 Gb 
-5 195.998 G 
-4 207.652 Ab 
-3 220.000 A 
-2 233.082 Bb 
-1 246.942 B 
0 261.626 C 
 

Middle C 
0 261.626 C 
1 277.183 Db 
2 293.665 D 
3 311.127 Eb 
4 329.628 E 
5 349.228 F 
6 369.994 Gb 
7 391.995 G 
8 415.305 Ab 
9 440.000 A 
10 466.164 Bb 
11 493.883 B 
12 523.251 C 
 

Above C 
12 523.251 C 
13 554.365 Db 
14 587.330 D 
15 622.254 Eb 
16 659.255 E 
17 698.456 F 
18 739.989 Gb 
19 783.991 G 
20 830.609 Ab 
21 880.000 A 
22 932.328 Bb 
23 987.767 B 
24 1046.502 C 
 

 
Notice that the frequency spacing is proportional to frequency itself.  If we wanted to 
distinguish these notes using wavelet or harmonic analysis we would want to be able to 
distinguish half tones in the lowest octave.  The difference between C and Db in the 
lowest octave is 69.296 - 65.406 = 3.89 Hz.  To distinguish these frequencies we need to 
sample a long enough time so that the wavelet structures we project onto the data get 
significantly out of phase on this time interval.  Then one wavelet will project well onto 
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the harmonic of interest, but the next one won’t.  If two frequencies differ by f , then 
they become different in phase by one cycle in a time such that f T = 1cycle , or: 
 

 f =
1

T
or T =

1

f
 

This is the same as the formula for the bandwidth of a Fourier spectral analysis.  If we 
give a Fourier analysis a time interval of T to work on, it can distinguish frequencies 
separated by 1/T, the bandwidth of the spectral analysis.  Since we need good frequency 
resolution, and we have FFT software readily available, it is attractive to use a moving 
block FFT spectral analysis to detect the notes, and not mess with wavelets.  To exactly 
separate that C from that Db, you would need to do a Fourier analysis in blocks of 1/(3.89 
Hz), or about a quarter of a second.  Since many notes are not held for a full quarter 
second, you may want to do the analysis more often than once every quarter second, so 
you would have overlapping periods of record and compute a new spectrum every eighth, 
sixteenth, or thirtysecond of a second.  To get better time resolution in the higher 
frequencies, where you don’t need so much frequency resolution, you could use shorter 
blocks of say an eighth of a second to do the spectral analysis to find the notes.   
 
Sound is recorded digitally on Cds with a sampling rate of 44,100 Hz to resolve the 
20,000 Hz signals that some people can hear.  The human voice is very well reproduced 
with about 8,000 samples per second.  So if it is a voice recording, you may as well 
reduce the sampling rate to about 8 kHz.  When this is done a quarter second is about 
2048 samples, which works really well for FFT analysis.  Someone reasonably familiar 
with Matlab can write a program to do this type of frequency analysis in a few hours.  
Below is an example of a frequency analysis of a male gospel singer.  This was done with 
an FFT of length 2048 8kHz samples, done and plotted every 256 samples.  Thus about a 
1/4 second sample is taken every 1/32 of a second.  A Hanning window was used.  The 
Hanning window effectively shortens the sampling interval while smoothing the 
spectrum a little. 
 
The analysis is able to capture the frequency of the notes sung, which can then be read off 
the table above.  The temporal resolution of the frequency analysis is good enough to 
capture the trilling of the held notes around 6 and 8.5 seconds.  You see a hint of the 
resonance higher harmonic between seconds 7 and 9.  The high frequencies around 7.5 
seconds are talking or clapping in the background.  Without the resonances and the 
clapping, it would be a simple matter to write software to convert this frequency analysis 
into MIDI events, which could then be introduced to a standard musical notation package 
to produce sheet music from original recordings.  Thence the musical inverse problem 
would be solved, so long as the music is based on the western system with the A-tuning. 
 
The next figure shows the time frequency analysis at a later time when the other members 
of the quartet are also singing.  I have chosen a section where little resonance is present.  
At other times we see more than 4 peaks, even though only 4 people are singing.  This is 
because of the harmonics generated by the individual singers.  A professional quality 
voice is characterized by the richness and pleasing quality of the harmonics that are 
generated.  Good singers can control the amount of the higher frequency resonances that 
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they produce and generate interesting variations that way.  Luciano Pavarotti is gifted 
with a voice with lots of harmonic richness and color. 
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Figure:  Frequency analysis of male vocalist.  Contours are spaced in powers of two. 
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Figure:  Frequency analysis of gospel quartet singing harmony. 
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