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8.  Kalman Filtering 

In this section we will discuss the technique called Kalman filtering.  Kalman 
filtering is a technique for estimating the state of a dynamical system from a sequence of 
incomplete or noisy measurements.  The measurements need not be of the state variables 
themselves, but must be related to the state variables through a linearizable functional 
relationship.  It is a solution to the linear-quadratic-Gaussian problem, which is the 
problem of estimating the instantaneous state of a linear dynamical system which is 
perturbed by Gaussian white noise-by using measurements of observables that are 
linearly related to the state, but are corrupted by white noise.  It is optimal in the usual 
quadratic mean-square sense.  It is one of the greatest innovations in statistical estimation 
theory and is widely used in a variety of applications.   

Rudolf Emil Kalman born in Budapest in 1930, and emigrated with his family to 
the US in 1943.  He went to MIT and completed a Ph.D. at Columbia in 1957.  He 
studied Wiener's work on filtering and came up with the idea of applying it in state space 
and equating the expectation operator with a projection in a finite dimensional state 
space, and the Kalman filter resulted.  The Wiener filter is used with analog electronics, 
whereas the Kalman filter is ideally suited to dealing with digital data.  The Kalman filter 
was used as part of the onboard guidance system on the Apollo Project, one of its first 
applications.  A large fraction of guidance and process control systems include Kalman 
filters of one stripe or another-there are many variations and extensions now. 

In numerical weather prediction the functional relationship used to connect the 
observables and the state vector is the numerical weather prediction model, augmented by 
other models that may relate observables to state variables.  Kalman filtering allows an 
initial analysis to be made in an optimal way from observations taken at random times  
(the model is used to do an optimal temporal interpolation that includes the atmospheric 
dynamics and physics as represented in the NWP model), at random locations (the spatial 
interpolation is done with the model equations), and from a diverse set of observations 
(rawinsondes, aircraft, buoys, satellites, etc.).  In recent years NWP models have begun to 
incorporate satellite radiance measurements, rather than derived variables such as 
temperature or humidity.  In this way the high resolution details that the model may have 
constructed(correctly), but which can not be resolved by remote sensing, are not 
corrupted by the satellite retrieval.  Rather the model adjusts its (e.g.) temperature in a 
way that is consistent with the observed satellite radiance, but which disturbs the model's 
useful information in the minimum way.  For this we need to include the forward model 
that predicts the radiances from the model temperatures as part of the Kalman filter.  A 
full-blown Kalman filtering data assimilation scheme has yet to be implemented, but so-
called “four-dimensional variational” assimilation schemes now coming on line can be 
considered to be practical approximations to a Kalman filter approach.  The first 
application of Kalman filters in meteorology that I am aware of was to the optimal 
estimation of zonal Fourier coefficients of temperature in the stratosphere from 
observations taken from a polar-orbiting satellite (Rodgers, 1977). 
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We will start with very simple concepts and work up to the idea of a Kalman 
filter.  We will not go into the actual implementation of a Kalman filter in an NWP 
assimilation scheme, but will concentrate on the basic concepts, and a concrete example 
or two. 

 
Outline: 
 
1.  Combination of estimates 
 

Suppose we have two estimates of the state of a system. How can we “best” combine 
the two estimates to obtain a combined estimate that is “better” than both individually?  
How do we estimate the improvement and the quality of the new estimate? 
 
2.   Sequential estimation  
 

How can we “best” improve our estimate of a “state vector” by adding new 
observations?  How to we keep track of how good the new estimates are? 

 
2.  Kalman Filtering 

 
How can we do sequential estimation and also take into account a linearized version 

of the known mathematical relationship between the observations and the state variables 
or among the state variables themselves? 

 
Problems:  General Case 
 

In general objective analysis problems we have several complexities and 
imperfections to deal with and need to make the most of what we have to work with. 
 
a. Observations are noisy and not complete,  e.g., 1 point on a map of geopotential, 1 

velocity component, 1 point on a latitude circle- all with different error 
characteristics. 

 
b.  Observations are not all taken at synoptic times, but are distributed inconveniently in 

time and space, e.g. satellite measurements, aircraft measurements, etc. 
 
c. Observables are not part of the chosen state vector, but can be related to it functionally. 

 
1. State variables are parameters of an orbit; observable is the position of the satellite 

at a particular time. 

2. State vector is a functional map of temperature (e.g. Fourier coefficients, spherical 
spectral coefficients); Observables are temperature at points irregularly distributed 
in time and space. 
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3. State vector includes regions where we seldom or never get observations (over 
oceans, in boundary layer, in Southern Hemisphere), but we have a global model 
that relates variables at all locations. 

4. State vector includes variables that are not measured, but we have a model that 
relates all variables.  For example, we have lots of radiance measurements over the 
oceans from satellites that are related to the temperature profile, but few direct wind 
observations. 

 

8.1  Combining Estimates  

In order to more easily understand how the principles of Kalman filtering work, we can 
first consider the simple problem of combining two or more estimates of which the 
accuracy can be estimated. An old, but readable source on this is Deutsch (1965). 

 Suppose we have a measurement estimate, ˆ x 1 of a vector x with which we associate 
some error q1 

 q1 = ˆ x 1 x  

Suppose q is unbiased, 

 E q1{ } = 0  

where E{x} is the expected value of x, for example the average value. 
 
The covariance matrix of the error is 

 S1 = E q1q1
T{ }  (8.2) 

Suppose we have a second unbiased measurement estimate of x, ˆ x 2 with error q2 and 
error covariance matrix S2. 

 q2 = ˆ x 2 x, E q2{ } = 0, S2 = E q2q2
T{ }  (8.3) 

 
Optimality and Risk: 
 
 In optimization theory we normally choose a measure of a bad (good) consequence and 

try to minimize (maximize) it. The classical example is the mean squared error E q
1
2{ }  
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which is minimized and leads to least squares regression, which was first used by 
Gauss(1777-1855).  This is only one possible definition of a risk function,but it is by far 
the most common and useful.  In general we want to choose a risk function that: 
 
1.   Is a good measure of a bad consequence whose minimization will lead to a desirable 

result. 
 
2.   Has a form that is convenient to manipulate and the minimization of which can be 

easily obtained.  This is where quadratic error shines, since the solution for the 
optimzation problem is linear. 

 
 
8.1.1 Scalar case 

Here we consider the example of combining two estimates of a scalar quantity.  
Once we have combined two estimates, we can combine an infinite number sequentially 
if we can estimate the error of the combined estimate at every step.  This forms the basis 
for sequential estimation, which is the basic process of which Kalman filtering is a 
sterling example. 

 E q1
2( ) = 1

2, E q2
2( ) = 2

2  (8.4) 

 

  

R x( ) = x1 x( )
2

1
2

       

Squared error of 1

Expected error of 1

+ x2 x( )
2

2
2

       

Squared error of 2

Expected error of 2

 (8.5) 

 
If x1 has a much higher than expected rms error than x2, then we should not weight the 
deviation of x1 from x as heavily as that of x2.  That is, x1 should not dominate the 
minimization since we know it is very noisy anyway. We don’t want to draw too closely 
to noisy data. 
 
Next we minimize R with respect to the unknown x. 

 
R
x

= 0 = 2 x1 x( ) 1
2 2 x2 x( ) 2

2  (8.6) 

The choice of x which minimizes the risk, i.e., the optimal estimate of x, ˆ x  is the x for 
which 

 
ˆ x 1 ˆ x ( )

1
2 +

ˆ x 2 ˆ x ( )

2
2 = 0  (8.7) 
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or 

 ˆ x =

ˆ x 1

1
2 +

ˆ x 2

2
2

 

 

 
 

 

 

1

1
2 +

1

2
2

 

 

 
 

 

 

= ˆ  2
ˆ x 1

1
2 +

ˆ x 2

2
2

 

 

 
 

 

  (8.8) 

This is the combination of x1 and x2 that minimizes the risk function. 
 
Exercise:  Find the expected error associated with the combined estimate ˆ x . 
 
 
8.1.2  Vector Operations Form 
 
 Suppose that rather than a single x we have a collection of observables that we choose to 
represent with a vector x1. A risk function for the vector problem can be formulated as 
follows: 

 R x( ) = ˆ x 1 x( )
T

S1
1 ˆ x 1 x( )+ ˆ x 2 x( )

T
S2

1 ˆ x 2 x( )  (8.9) 

We have taken the projection of the error on itself with a weighting matrix that is the 
inverse of the error covariance matrix.  This gives us the desired weighted measure of 
quadratic error as a discrete projection in state space.  We differentiate with respect to the 
unknown x to minimize this risk function. 

 
x
R x( ) = S1

1 ˆ x 1 x( )( )
T

ˆ x 1 x( )
T

S1
1 S2

1 ˆ x 2 x( )( )
T

ˆ x 2 x( )
T

S2
1 = 0  

or, noting that S is symmetric, 

 S1
1 ˆ x 1 ˆ x ( )+S2

1 ˆ x 2 ˆ x ( ) = 0  

The x that satisfies this, ˆ x , is our best estimate. 

 S1
1ˆ x 1 +S2

1ˆ x 2 = S1
1 +S2

1( )ˆ x  

our best estimate is thus: 

 ˆ x = S1
1 +S2

1( )
1

S1
1ˆ x 1 +S2

1 ˆ x 2( )  (8.10) 



ATM 552 Notes Kalman Filtering: Chapter 8 page 221 

Copyright 2008   Dennis L. Hartmann 2/29/08  1:59 PM 221

It is useless to construct a new estimate, unless we can estimate the error of the new 
estimate.  So we next need to calculate the error covariance matrix for the combined 
estimate, which is. 

 
ˆ S = E ˆ q ̂  q T{ } = E ˆ x x( ) ˆ x x( )

T{ }

= E S1
1 + S2

1( )
1

S1
1x1 + S2

1x2( ) x
 

  
 

  
S1

1 + S2
1( )

1
S1

1x1 + S2
1x2( ) x

 

  
 

  

T 
 
 

 
 
 

 

Where E represents an expected value or ensemble average operator.  Now we can 
rearrange this productively by noting that 

 S1
1 + S2

1( )x = S1
1x +S2

1x  

 or 

 x = S1
1 + S2

1( )
1
S1

1x+S2
1x( )  

Substituting this into the expression for S we get: 

 

ˆ S = E S1
1 + S2

1( )
1

S1
1 x1 x( ) + S2

1 x2 x( )( ) 

 

 

 

 
 
 

S1
1 + S2

1( )
1

S1
1 x1 x( ) + S2

1 x2 x( )( ) 

 

 

 

T  
 
 

 

Now use 

 AB( )T = BTAT  
 
to rearrange the second half of the product within the curly brackets in the above equation 

 

ˆ S = E S1
1+ S2

1( )
1

S1
1 x1 x( ) + S2

1 x2 x( )( ) 

 

 

 
•

 
 
 

S1
1 x1 x( )( ) + S2

1 x2 x( )
T S1

1 + S2
1( )

1T 

 

 

 

 
 
 

 

or doing some more transposing of the second part, 
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ˆ S = E S1
1+ S2

1( )
1

S1
1 x1 x( ) + S2

1 x2 x( )( ) 

 

 

 
•

 
 
 

x1 x( )
TS1

1T + x2 x( )
TS2

1T( ) S1
1 + S2

1( )
1T 

 

 

 

 
 
 

 

We can now expand this out, to get, 

 
= E{S1 1+S2

1( )
1
S1

1 x1 x( ) x1 x( )
T
S1

1T +S1
1 x1 x( ) x2 x( )

T
S2

1T

+S2
1 x2 x( ) x1 x( )

T
S1

1T +S2
1 x2 x( ) x2 x( )

T
S2

1T

 

 

 
 
 

 

 

 
 
 

S1
1 + S2

1( )
1T}

 

If we assume that the errors of the two measurements are uncorrelated, then the second 
and third terms inside the parentheses are zero and we get: 

 ˆ S = S1
1 + S2

1( )
1

S 1
1T + S2

1T( ) S1
1 + S2

1( )
1T

 

 ˆ S = S1
1 + S2

1( )
1

 (8.11) 

This is a simple result achieved after much effort.  It is entirely analogous to the scalar 
result expressed in (8.8) above.   

 Since we have determined a method to combine two estimates of a vector for 
which we know the covariance matrix of the measurement error, and we can derive a 
formula for the covariance matrix of the error of the combined estimate, we have set the 
stage for sequential estimation.  Suppose we have started with two observations, x1 and 
x2 , from which we get a combined best estimate, 

 ˆ x = S1
1 +S2

1( )
1

S1
1x1 +S2

1x2( )  

with a new, improved error covariance matrix, 

 ˆ S = S1
1 + S2

1( )
1

 

 
Now suppose we have a new observation x3, which we can combine with the best 
estimate from the previous two to get a new best estimate. 
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 ˆ x new= ˆ S old
1 +S3

1( )
1 ˆ S old

1ˆ x old +S3
1x3( )  

 
with a new error covariance matrix,  
 

 ˆ S new= ˆ S old
1 + S3

1( )
1

 

 
Apparently we can continue this process forever, getting better and better estimates of x 
and reducing the measure of the error covariance matrix.  If each new observation has a 
similar error covariance matrix, the estimates of ˆ x new and ˆ S new  will converge and 
become very insensitive to the addition of new data, provided that the true state is not 
changing in the mean time.  In most applications of interest, the true value of x will 
change on a time scale that is not large compared to the rate at which we get new 
observations, and we will have to find some method of taking account of this in the 
estimation process.  This usually involves some assumption about the growth with time 
of the error covariance of the combined estimate.  In this way the most recent data will 
always have an important impact on the latest estimate. 
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8.2  Sequential Estimation when the state vector is not directly observable  
 
8.2.1  Estimating the state vector and its error covariance matrix from the observables. 

In this section we present a derivation of a discrete Kalman filter, in which we use 
a linearized version of a function that relates the observables to the state variables.  
Sequential estimation is the process of successively adding estimates of a state vector and 
at each step estimating the confidence attributed to the combined estimate, so that the 
expected error of the estimate decreases.  Suppose we have a system that is described 
completely by a state vector b.  Suppose further that we cannot observe b directly but 
have a set of observables W and a relation between the state vector and the observables. 

 W = b( )  (8.12a) 

In order to begin we need at least as many observables, p, as there are elements in the 
state vector so that we can invert the relation. 

 0
ˆ b 0( ) =

01
ˆ b 0( )

02
ˆ b 0( )

........

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

= W0  (8.12b) 

to obtain the first estimate ˆ b 0  of b from W0. Otherwise we must simply guess ˆ b 0  to 
start the estimation process.   
 
The initial error will be q0  =  ˆ b 0  -b 
 
 If we have more than p observables then we must define a risk function to enable us to 
choose the optimal 0(b) given W0 that contains more than p data. 

 R b( ) = W0 0 b( )[ ]
T
S0

1 W0 0 b( )[ ]  (8.13) 

here S0 is the covariance matrix of the measurement error.  Here the subscript zero on the 

0(b) function indicates that we may only be able to make a linear approximation to the 
transfer function between the state vector and the observables, and that this linear 
approximation depends on our estimate of where in state space we are.  We next define 
the measurement error, a and its error covariance matrix S. 
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a =W b( )

S = E a E a{ }( ) a E a{ }( )
T{ }

 

which are assumed known.  E is the expected value operator-you can think of it as the 
ensemble mean. 
 
 How do we construct the error covariance matrix for b? We do not know it, since the 
state vector cannot be directly observed.  Try a Taylor Series: in hopes of expressing a 
small deviation of the state vector b in terms of small deviations in the observables, W.= 

0(b). 

 0
ˆ b 0( ) = 0 b( )+F0 b( ) ˆ b 0 b( )+ .......  

 F0 b( )

p p

= b 0 b( )

p 1 1 p

 

 
Here we evaluate the gradient at a specific value of b.  So now we can write, 

 

  

F0 b( ) q0

error
in b

= 0
ˆ b 0( ) 0 b( )

error in obs
       

 (8.14) 

Then we can write the error covariance matrix of the observables in terms of the error in 
the state vector.  

 E F0q0q0
TF0

T{ } = E a0a0
T{ } = S0  (8.15) 

Suppose the parameter (b) error covariance matrix is given by  

 0 = E q0q0
T{ }  

We can now go back and forth between observational error covariance S, and the state 
vector error covariance , by using the linearized converson function, F.  First we can 
relate the observational error covariance matrix to the state vector error covariance 
matrix, 

 S0 = E W0W0
T{ } = E F0q0q0

TF0
T{ } = F0 0F0

T  

 
and then, more usefully, the state vector error covariance to the observation error 
covariance, 
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 0 = E q0q0
T{ } = E F0

1W0W0
TF0

1T{ } = F0 1S0F0
1T   

and, if we want the inverse,  

 0
1

inverse
of error

covariance of
parameters

= F0
+1T S0

1

inverse
error

covariance
of obs.

F0
+1  

 
Now we can obtain 0

1 , the error in inferred state vector, from the error covariance 
matrix of the observables. 
 
Remember that, 

 

  

Sensitivity matrix  F0 b0 b( )

error in
parameters

     
= 0 b( ) b( )

error
in obs.

       
 

Now we have: 
 
(1) An initial estimate ˆ b 0 of the state vector variables based upon an initial set of 

measurements. W0 = 0 (b0). 

(2) An estimate of the error covariance 0 of ˆ b 0 given the error covariance matrix of 
measurements S0,  

 
Let's stop for a minute and consider some examples of where this might be applied:   
 
1) Determining the orbital parameters of an artificial satellite from observations of its 

position as a function of time. 
 

b = orbital parameters 
W = angles or positions that can be observed 
W = (b) 

 = celestial mechanics equations 
 

2)  Determining a zonal Fourier representation of the temperature field from observations 
taken at nadir under a polar-orbiting satellite or from limb scanning measurements 

. 
b = Coefficients of zonal Fourier expansion of temperature 
W = Temperatures taken at particular points along a latitude circle 

  = formulas of zonal Fourier expansion 
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W = (b) = bi coskx+ bi+1 sinkx 

 
3)  Determining the state of the atmosphere, as represented in a numerical weather 

prediction model, given observations of some incomplete subset of the full state 
vector at an odd assortment of places and times, plus things like radiances that are not 
part of the state vector. 

 
b = full state vector of the numerical model at some particular time 
W = some observations at some points in space-time not necessarily where we want 

them.  They may be variables that are part of the state vector, but are certainly 
not all of them.  Some of them are weird-like radiances from sounding satellites 
and imagers or backscatter coefficients from scatterometers. 

W = (b) 
 = The equations of the numerical model of the atmosphere, plus equations that 

may relate observables to the state vector. 
 
 
8.2.1  Improving the Estimate of the state vector with more observations 
 

Suppose we now wish to improve this initial estimate with a new set of 
observations W1.  The number of observations in W1, s, need not equal the number of 
parameters, p, contained in the vector of state parameters b.  Let’s construct a risk 
function for the combination of estimates. 

 R bq0, a1( ) = q0
T

0
1q0 + a1

TS 1a1

= ˆ b 0 b( )
T

0
1 ˆ b 0 b( ) + W1 1 b( )( )

T
S 1 W1 1 b( )( )

 

Now operate on this risk function with operator b (matrix differential operator) and try 

to minimize the risk.  To find the new best estimate of b, ˆ b 1 .  We get, 

 0
1 ˆ b 0

ˆ b 1( )+ b 1
T ˆ b 1( )[ ]S 1 W1 1

ˆ b 1( )[ ] = 0  (8.16) 

We can now expand 1 (b1) about b (true value) in a Taylor series and retain only the 
first term. 
 

 1
ˆ b 1( ) = 1 b( )+Tb

ˆ b 1 b( )  (8.17) 

where b = Tb  (8.18) 
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Tb thus represents the linear tangent to the model evaluated at the state b.   If  (b) is a 
linear function then this procedure can be carried through without a Taylor Series 
expansion.  In numerical weather prediction, Tb is the linear tangent operator of the 
numerical model.  It depends on the state vector, since it is a linear perturbation about it. 
 
Now apply(8.17) to (8.16 ) to get 

 0
1 ˆ b 0

ˆ b 1( ) +Tb
TS 1 W1 1 b( ) Tb

ˆ b 1 b( )[ ] = 0  (8.19) 

or 

 0
1 ˆ b 0

ˆ b 1( ) = Tb
TS 1Tb

ˆ b 1 b( ) Tb
TS 1 W1 1 b( )( )

= N ˆ b 1 b( ) Tb
TS 1a1

 (8.20) 

where 

 Tb
T
= b

T b( )

N = Tb
TS 1Tb

 (8.21) 

We can manipulate the observation error in the following way. 

 
a1 = W1 1 b( )

= W1 1
ˆ b 0( ) Tb b ˆ b 0( )

= d1 Tb b ˆ b 0( )

 (8.22) 

Here d1 is the measurement error estimated using the estimated state vector ˆ b 0 . 
 

 d1 = W1 1
ˆ b 0( )  (8.23) 

Combine (8.20) and (8.22) 

 0
1 ˆ b 0 b1( ) = N ˆ b 1 b( ) Tb

TS 1 d1 Tb b ˆ b 0( )( )

= N ˆ b 1 b( ) Tb
TS 1d1 +N b ˆ b 0( )

 (8.24) 

= 

Solve for b1:  (Note: N b drops out, fortunately.) 
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 ˆ b 1 =
ˆ b 0 + N + 0

1[ ]
1
Tb
TS 1d1

ˆ b 0 + N0 + 0
1[ ]

1
T0
TS 1d1

 (8.25) 

where we have made the approximation of evaluating Tb using our guess of b = b0. 

 T0
T
= Tb0

T  

so that N0 = T0
TS 1T0  (8.26) 

and ˆ b 0  is the first guess.  
 
Let’s simplify (8.25) a little by writing it as, 

 

      

ˆ b 1 = ˆ b 0 + M1
ˆ b 0( )

Smoothing or
weighting

matrix

     

W1 1
ˆ b 0( )[ ]

Observation
residual

       

 (8.27) 

 M1
ˆ b 0( ) = N0 + 0

1[ ]
1
T0
TS 1  (8.28) 

 
The expression (8.27) indicates the optimum manner for modifying the initial estimate 
ˆ b 0 , by an appropriate weighting of new observation W1 given the measurement error 

matrix S, prediction function , and sensitivity matrix T. 
 
Note:   M1( ˆ b 0 ) depends on the last (best) estimate of b. 
 
What is the dimension of M1( ˆ b 0 )? 

 

  

ˆ b 1
p 1[ ]

= ˆ b 0
p 1[ ]

+ N0 + 0
1[ ]

1 p p[ ]

T0
T p s[ ]S 1 s s[ ]

M1
ˆ b 0( )

p s[ ]

               
W1 1

ˆ b 0( )[ ]
1 s[ ]

d1
1 s[ ]

         

p 1[ ] ok if s< p

In Rodgers applic. s=1, p=13.
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We can construct a recursive scheme to improve our estimate of b sequentially using 
observations Wi 

 

ˆ b i+1 = ˆ b i +Mi+1
ˆ b i , ˆ b i+1,ˆ b 0( ) Wi+1 i+1

ˆ b i( )[ ]
Mi+1

ˆ b i ,ˆ b i+1 , ˆ b 0( ) = Ni + i 1
1[ ]

1
Ti
TS 1

Ni+1 = Ti+1
T S 1Ti+1

i = Ni bi( ) + i 1
1[ ]

1

 (8.29) 

By considerable manipulation one can reduce this to a form requiring only one inverse. 
 
Kalman filtering is theoretically very appealing and is correspondingly very powerful and 
effective.  Its main problem is that it takes a great deal of computational resources to 
apply it to realistic problems in meteorology, and it is currently impractical to apply it in 
its full form to today’s numerical prediction models with millions of degrees of freedom.  
In the next section we will do a simple practical example in mapping satellite data into 
Fourier coefficients, without the use of any other model equations. 
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8.3  Kalman Filter Application to Mapping Satellite Data 
  

In this section we will consider the use of the Kalman filter for making global 
synoptic maps from polar orbiting satellites.  Sun-synchronous satellites are in about 98˚ 
inclination orbits whose equator crossing time remains fixed relative to the sun.  For 
every latitude less than about 82˚, they produce two observations each orbit at each 
latitude.  An orbit takes about 90 to 120  minutes, depending on the orbital altitude, so 
13-15 orbits are executed each day, and the ground tracks of successive orbits are 
separated by about 15 degrees of longitude.  For a given latitude 0, a polar orbiting 
satellite produces a sequence of observations of T, say temperature for instance. 

 
    
T a1 ,

ta1( ),T d1,
td1( ),T a2 ,

ta2( ),T d2 ,
td2( ),...  

 
Polar orbiting satellites: 

L
a
ti

tu
d
e

Longitude

•
a,ta d,td 

Track of Polar-Orbiting Satellite

Sampling at latitude 

•

 
 
A non sun-synchronous, or medium inclination orbiter, would sample in much the same 
way, except it would not reach as high a latitude, and the local solar time of the equator 
crossings would vary with time. 

An observation can be taken at a particular latitude at most once each time the 
satellite crosses the latitude circle. A typical polar orbiting satellite crosses the equator 
twice during each 90 minute orbit, once on the ascending node(heading toward the north 
pole) and once on the decending node. If the satellite is sun-synchronous, then it takes 24 
hours for the ascending node crossings to precess through all longitudes. How can we use 
a Kalman Filter Algorithm to make synoptic maps out of this mess? We can use a 
sequential estimator or Kalman filter. 

 bi+1 = bi + N1 + i 1
1[ ]

1
Ti
TS 1 Wi+1 i+1

ˆ b i( )[ ]  (8.30) 



ATM 552 Notes Kalman Filtering: Chapter 8 page 232 

Copyright 2008   Dennis L. Hartmann 2/29/08  1:59 PM 232

take b, the state vector, to be the coefficients of a zonal harmonic analysis of the  
temperature T 

 T ( ) = b1 + b2 cos + b3sin + b4 cos2 + b5sin 2 + ... + b13sin 6  

 b =

b1

.

.

b13

 

 

 

 

 

 

 

 

 

 

 

 

 

where we have arbitrarily truncated the zonal harmonic expansion at wavenumber 6, 13 
coefficients. This is about the maximum number of functions you can expect to define 
with only 13 orbits per day. The temperature at a particular set of longitudes is given by, 

 W i( ) =

1,cos 0,sin 0, cos2 0,sin2 0...

1,cos 1,sin 1,cos2 1,sin2 1...

1,cos 2,sin 2,cos 2 2,sin 2 2...

 

 

 
 
 
 

 

 

 
 
 
 

b1

b2

b3

.

b13

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

= Tb  

In this case, the transformation from observable to state vector (observation at a longitude 

along a latitude circle to the Fourier coefficients of an expansion along that latitude) is 

linear and constant, so we don’t need to do a Taylor Series expansion. 

 
W = b( ) = T b

Ni = Ti
TS 1Ti = constant

 

 

then 

 bi+1 = bi + T
TS 1T + i 1

1[ ]
1
TTS 1 Wi+1 T bi[ ]  (8.31) 

 i = T
TS 1T + i 1

1[ ]
1
 (8.32) 

 
Let’s manipulate this so that only one matrix inverse is required for each time step.  Start 
by inverting (8.32), 
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 i
1
= TTS 1T+ i 1

1  (8.33) 

 i i i
1
= iT

TS 1T+ i i 1
1  (8.34) 

 i 1 i 1 = iT
TS 1T i 1+ i  (8.35) 

 TT i 1T
T
= iT

T
+ iT

T S 1T i 1T
T

= iT
TS 1 S + T i 1T

T( )

 (8.36) 

 i 1T
T S + T i 1T

T( )
1
= iT

TS 1  (8.37) 

post multiply by T i - 1 

 i 1T
T S + T i 1T

T( )
1
T i 1 = iT

TS 1T i 1 (8.38) 

Inserting (8.38) into (8.35) 

 
i 1 = i 1T

T S + T i 1T
T( )

1
T i 1+ i

or

i = i 1 i 1T
T S + T i 1T

T( )
1
T i 1

 (8.39) 

i.e., only 1 matrix inversion is now required to get i from i - 1. 
 
Note that (8.31) can be written, subs (8.32) into (8.31), 

 bi+1 = bi + iT
TS 1 Wi+1 Tbi[ ] (8.40) 

 
substitute (8.37) into (8.40) to get 

 bi+1 = bi + i 1T
T S + T i 1T

T( )
1
Wi+1 Tbi[ ]  (8.41) 

(8.39) and (8.41) form a new system where only one matrix inverse S + T i 1T
T( )

1
 is 

required. 
 
We march messily ahead: 

 bi+1 = bi + i 1T
T S + T i 1T

T( )
1
Wi+1 Tbi[ ]  (8.42) 
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 i = i 1 i 1T
T S + T i 1T

T( )
1
T i 1 (8.43) 

In practice, for the satellite mapping problem we are only inserting one temperature at a 
time so that  Wi  =  Wi  , a scalar i.e., s = 1. 

 

  

bi+1 = bi + i 1T
T 2

+ T i 1T
T( )

1

1 1[ ]
         

Wi+1 Tbi[ ]

= 13 1[ ]

 

 i = i 1 i 1T
T 2

+ T i 1T
T( )

1
T i 1  

In this simple case no matrix inversion is required at all.  The state vector is 13x1(a 
column vector), the T matrix operator is 1x13 (a row vector), the error covariance matrix 
of the state vector is 13x13, and the error matrix of the observations is a scalar.  The 
matrix we are required to invert is also a scalar. 
 
Note that we can write (8.43) as: 

 

  

i = i 1 I TT S + T i 1T
T( )

1
T i 1

 

  
 

  

A
             

 

 It can be shown that if the eigenvalues of A are not all less than one, the iteration will not 
converge. However, if it does converge i will become smaller with time. This is O.K. if 
b is not changing in time. Since we know that as we go along adding our data, time is 
passing and the atmosphere is changing, we need to augment the error covariance matrix 
of the state vector i so that it will reflect this additional uncertainty. 
 
Rather than use i - 1 in (8.42) and (8.43) use 

 Si
0
= i 1 + t  (8.44) 

 bi+1 = bi +Si
0TT 2

+TSi
0TT( )

1
Wi+1 Tbi[ ]  (8.45) 

 i = Si
0 Si

0 2
+ TSi

0TT( )
1
TSi

0  (8.46) 

Here 2 is the covariance of the error of the measurements (now a scalar). 

  can be chosen to be = clim  (8.47) 
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Where clim is the climatological covariance of the coefficients and  is the time it takes 
the state vector to change so that 

 E bt bt+ t[ ] bt bt+ t[ ]
T{ } clim  (8.48) 

 If we assume that the mapping process is done retrospectively, so that we have a long 
data series to work with, then we can pass over the data twice, once forward in time and 
once backward in time and obtain two estimates at each map time. 

 ˆ b forward t1( ), ˆ b backward t1( )  and save their associated error covariance matrices. 

 
These can then be combined in the usual manner that takes into account the objective 
measures of confidence we have calculated. 

 ˆ b comb ti( ) = S f
1
+ Sb

1( )
1

S f
1ˆ b forward + Sb

1ˆ b backward( )  (8.49) 

If you have a data gap as shown below, then the linear growth with time of the error 
assumed in (8.44) will mean that the forward solution will be weighted more heavily at 
the beginning of the gap, both will be weighted equally at the center, and the backward 
solution will be weighted more heavily at the end of the gap. 
 

Sf
Sb

Sb Sf = Sf(ta) + t= Sb(tb) + t

S

time ->0 T
Forward Estimate
weighted more 

heavily

Backward Estimate
Weighted more 

heavily

tbta

 
 

Kalman filtering works very well for this purpose and many others.  For this type 
of regular satellite data ingestion, there is also a transformed Fourier Method, which is 
must faster and very accurate, but which doesn’t do as well on missing data (Salby, 
1982a,b). 
 
References: 
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8.4  A Review of the Kalman Filter 
  

In this section we will briefly review the equations for a discrete Kalman filter 
developed in the previous sections.  The approach used here is a little more general than 
those shown previously, but is very similar in final structure to the derivation for the one-
inversion-only formulation given in (8.42) and (8.43).  In particular, the formulation 
below explicitly separates the model or system dynamic operator from the operator that 
relates the observables to the state vector.  In the previous two examples, the observation 
problem and the dynamical evolution problem were mixed together in a somewhat 
unsatisfactory way. 

 
A Discrete Dynamical System with Noise: 

 
 Consider the following discrete linear process with state variable bk  and 

observation w k   where the subscript k indicates an approximation step or time. 
 
 bk = Gk 1bk 1 +Hk 1 k  (8.50) 

 
 w k = Tk bk + k  (8.51) 
 
The operator Gk  describes the system dynamics of how the state evolves.  It 

would be the numerical weather prediction model, the celestrial mechanics equations, the 
factory process, or whatever system you are describing.  This linear operator is presumed 
known.  There is a separate set of mathematical and statistical tools to use if you know 
the state vector and want to estimate the system operator.  The system dynamics are 
subjected to the introduction of the noise process k  (it will be assumed to be Gaussian 
white noise here).  This noise is modified by the system dynamics by the operator Hk .  
The observables are related to the state vector through the operator Tk  , and the 
observation process is also subjected to noise, k  . If the governing equations are 
nonlinear, then we must use a linear tangent approximation to construct both the process 
operator Gk  and the observation operator Tk  .  Conditions that we will apply to the noise 
processes are that they are unbiased,  

 
 E k = 0; E k = 0  (8.52) 

 
and they have known error covariances matrices, which are diagonal,  
 

 E k i
T

= (k i)Ek ; E k i
T

= (k i)Vk  (8.53) 

 
We further assume that the noise processes are uncorrelated with eachother and 

with the state and observation variables.  We will not show the derivation of the Kalman 
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filter equations here, since we have shown a derivation above.  Let’s just look at the 
result. 

 
The Kalman Filter Equations: 

 
The Kalman filter to produce the best estimate of this system at each step is given 

by the following set of equations.  The index k is the iteration or time step, and the 
superscript - and + indicate the state of the estimation process before and after the new 
data have been incorporated, respectively. 

 

 
  
ˆ b k = Gk 1

ˆ b k 1
+  (8.54) 

 

The a priori estimate (-) at iteration k , 
 
ˆ b k , is the last best estimate at iteration k-

1, 
  
ˆ b k 1

+ , projected forward without noise using the system dynamics operator evaluated 
at the previous step 

  
Gk 1 .  The error covariance matrix of this estimate is the sum of the 

state vector error projected forward with the system operator and the process noise 
projected forward with its system operator.   

 

 k = Gk 1 k 1
+ Gk 1

T
+Hk 1EkHk 1

T  (8.55) 
 

The new estimate of the state vector is the first guess 
 
ˆ b k  plus a correction that is 

the deviation of the observation from the first guess, weighted by the Kalman smoothing 
matrix . 

 

 
  

ˆ b k
+

= ˆ b k + K k wk Tk 1
ˆ b k( )  (8.56) 

 
The Kalman smoothing matrix for the interation step k is given by, 

 

 K k = k Tk
T Tk k Tk

T
+ Vk( )

1
 (8.57) 

 
The matrix Vk  is the error covariance matrix of the observations, which was 

called S in the derivations of the previous sections. The new estimate of the error 
covariance matrix of the state vector to be used at the next step is,  

 

 k
+
= k K k Tk k  (8.58) 

 
The equations (8.54) through (8.58) constitute the Kalman filter estimator for the 

linear dynamical system (8.50) observed by the process (8.51).  They are similar to (8.42-
3), but we have included the intermediate steps more explicitly, particularly the first one 
(8.54) is always used in numerical weather prediction, and was not explicitly called out 
before.  The problem with applying this in a numerical prediction model is that the matrix 
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to be inverted is too big to be inverted, so further approximations to this step must be 
made. 

 
The Kalman filter estimator takes into account:  the known system dynamics, the 

effect of the system dynamics on Gaussian white noise (e.g. it might redden it), what is 
known about the error characteristics of the observations, and the relationships between 
the observables and the state variables.  It makes an optimum mean square estimate of the 
system state based on all of this input, and provides an estimate of the error of this 
estimate. 
 
 
 
 


