
ATM 552 Notes: Filtering of Time Series Chapter 7 page 190

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 190

7.0 Filtering of Time Series

7.1 Introduction

In this section we will consider the problem of filtering time or space series so that
certain frequencies or wavenumbers are removed and some are retained. This is an oft-
used and oft-abused method of accentuating certain frequencies and removing others.
The technique can be used to isolate frequencies that are of physical interest from those
that are not. It can be used to remove high frequency noise or low frequency trends from
time series and leave unaltered the frequencies of interest. These applications are called
low-pass and high-pass filtering, respectively. A band-pass filter will remove both high
frequencies and low frequencies and leave only frequencies in a band in the middle.
Band-pass filters tend to make even noise look periodic, or at least quasi-periodic. We
will begin by noting a few important theorems that constitute the fundamental tools of
non-recursive filtering.

The Convolution Theorem:

If two functions f1(t) and f2(t) have Fourier transforms F1() and F2() then the Fourier
transform of f1(t) f2(t) is

1

2
F1()F2()d

And the Fourier transform of

 f1() f2(t)d

is F1() F2(). This latter result is the most useful in filtering, since it says that the
Fourier transform of the convolution of two functions in time is just the product of the
Fourier transforms of the individual functions.

Parseval’s Theorem:

 f1 t() f2 t()dt =
1

2
F2()F1()*d

for f1(t) = f2(t) = f(t).

ATM 552 Notes: Filtering of Time Series Chapter 7 page 191

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 191

 f t()2 dt =
1

2
F()

2
d

Here we see that the variance of a time series integrated over all time is equal to the
power spectrum integrated over all frequency.

7.2 Filtering

Suppose we wish to modify oscillations of certain frequencies in a time series while
keeping other frequencies the same. e.g. remove high frequency oscillations (low-pass
filter), remove low frequencies (high-pass filter), or both (band-pass filter). The ozone
layer of Earth’s atmosphere is a low-pass filter for sunlight in the sense that it absorbs all
energy with wavelengths shorter than 300 nm before it reaches the surface. A couple
different approaches to filtering can be taken.

7.2.1 Fourier Method

 Fourier analyzed time series to compute amplitudes at all frequencies. Modify these
amplitudes as desired, then reconstitute the series.

 f t() = C
i

i

cos it i() (7.1)

 f filtered (t) = C
i
• R() • cos(i t i)

i=1

N

 (7.2)

Here the function R(w) is the response function of the desired filtering process and
measures the ratio of the amplitude of the filtered to the unfiltered time series as a
function of frequency.

 R()=
C filtered

C original

The problem with this method is that the reconstructed time series may not resemble the
original one, particularly near the ends. This is the same general characteristic of
functional fits discussed in an earlier chapter. Also, you need the whole record of data
before you can produce a single filtered data point, and the most recently acquired values
are at the end of the data stream, where the problems with the Fourier method are worst.
So if you want to do real-time filtering, Fourier methods are hopeless. For real-time
problems the recursive methods are quite good.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 192

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 192

7.2.2 Centered, Non-recursive Weighting Method

In the centered non-recursive weighting method, the time series is subjected to a
weighted running average, so that the filtered point is a weighted sum of surrounding
points.

 ffiltered t() = wk f t + k t()

k= J

J

 (7.3)

Some data points will be lost from each end of the time series since we do not have the
values to compute the smoothed series for i < J and i > N-J.

 It seems obvious that such an operation can most reasonably produce only smoothed time
series and hence constitutes a low-pass filter. However, a high-pass filter can be
constructed quite simply by subtracting the low-pass filtered time series from the original
time series. The new high-pass response function will then be

 RH ()=1 RL () (7.4)

Where the subscripts H and L refer to high- and low-pass filters. One can then design a
high-pass filter by first designing a low-pass filter that removes just those frequencies one
wishes to retain. You can also make a band-pass filter by applying a low pass filter to a
time series that has already been high-passed (or vice versa), in which case the response
function is the product of the two response functions (center case below). Or you can
subtract a low pass filtered version of the data set from another one with a cutoff at a
higher frequency, as illustrated below on the right.

1

0

R()

1

0

R()

1

0

R()

RL

RH=1-RL

RH

RB = RH • RL

RB

RB = RL1 - RL2

RL2
RL1

RB

7.3 The Response Function

 The response function is the spectrum of amplitude modifications made to all frequencies
by the filtering function.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 193

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 193

 R()
amplitudeof outputseries at frequency

amplitude of input series at frequency

 R2()
()

()

output power at

 input power at

R() can be real or imaginary. Some filtering is done by nature and instruments and
these may introduce phase errors. Any filter we would design and apply would have a
real response function, unless we desire to introduce a phase shift. Phase shifting filters
are not too commonly used in meteorological or oceanographic data analysis or
modeling, and so we will not discuss them except in the context of recursive filtering,
where a phase shift is often introduced with a single pass of a recursive filter.

How do we design a weighting with the desired frequency response? Our smoothing
operation can be written

 g t() = f t + k t()

k= J

J

w k t() (7.5)

where g(t) is the smoothed time series, f(t) is the original time series and w(k t) is the
weighting. In the continuous case we can write this as

 g t() = f ()w t()d (7.6)

The filtered output g(t) is just the convolution of the unfiltered input series f(t) and the
filter weighting function w(t). From the convolution theorem the Fourier transform of

 f () w t()d is F() W()

 so that G() = F() W()

i.e. to obtain the frequency spectrum or Fourier coefficients of the output we multiply the
Fourier transform of the input times the Fourier transform of the weighting function.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 194

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 194

 Pg() =G()G*()=F()W() F()W()()
*

=F()F*() W()W*()

= F()2 W()2

Simple Example:

Suppose our input time series consists of a single cosine wave of amplitude 1.

The output signal is then

 g t() = wk
k=1

K

cos t + k t()()

And the Fourier Transform

 G() = 2 g t()

0

cos t dt

is

 G()=2 wk cos t + k t()cos t dt

= wk
k

cos k t

= wk
k

cos tk

Now F() = 1 so that

 R() =
G()

F()
= wk cos

k=

+

tk = W() as k .

The Response function R() is just the Fourier transform of the weighting function w(t).
If we assume that the response function and the weighting function are symmetric,

ATM 552 Notes: Filtering of Time Series Chapter 7 page 195

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 195

 R() =W() = 2 w t()cos d

0

=k t

and conversely the weighting function can be obtained from a specified (desired)
Response function

 w() = 2 R()

0

cos d

 w() and R() constitute a Fourier Transform Pair.

Some examples:

 A Bad Example: The rectangular “Boxcar” weighting function or “running mean”
smoother.

 w() =
1

T
 on the interval 0 < < T

0 T

1/T

0 t

Boxcar Weighting Function

As we recall, the Fourier transform of the boxcar is the sinc function

 R() =

sin
T

2

T

2

This response function approaches one as T/2 approaches zero. Hence it has no effect
on frequencies with periods that are very long compared to the averaging interval T.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 196

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 196

When T = 2n , n=1,2,3..., R() 0. he running mean smoother exactly removes
wavelengths of which the length of the running mean is an exact multiple. For example,
a 12 month running mean removes the annual cycle and all its higher harmonics.

0.

0.5

1.0

-0.5

sinc Response

Note that the response function, R(), of the running mean smoother is negative in the
intervals 2 , -4 , 6 , -8 , etc. This means that frequencies in these intervals will be
phase shifted by 180° because of the negative side lobes and the slow, 1/(T), drop off of
the amplitude of these side lobes the “running mean” filter is not very good. It may be
useful if we are sure that the variance for T > is small.

7.4 Inverse Problem

Suppose we wish to design a filter with a very sharp cutoff

R()

1.0

c

Perfect Square Response Function

From w() = 2 R()

0

cos d

ATM 552 Notes: Filtering of Time Series Chapter 7 page 197

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 197

we get, w() =

sin c

2

c

2

This is a damped sine wave (sinc function) again.

The first zero crossing occurs at

 c

2
= =

2

c

=
1

fc

The fact that the weight extends across several of these periods before dropping to zero
causes severe problems at the beginning and end of a finite time series. In practice it is
desirable to settle for a less sharp cutoff of R() for which more practical weighting
functions are available.

“Practical” Filters

(1) “Gaussian bell”

The function e x 2

forms a Fourier Transform pair with itself. Hence a Gaussian bell weighting function
produces a Gaussian bell frequency response. Although, of course, when you consider
the response function the bell is peaked at zero frequency and we usually ignore the
negative frequencies.

(2) The Triangular One-Two-One filtering function

g t() =
1

4
f t() +

1

2
f t() +

1

4
f t +()

R() = cos2v
2

t

where is the number of times the filter is applied.

The response function for the 1-2-1 smoother approaches a Gaussian bell shape for v > 5,
R() > 0.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 198

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 198

(3) Compromise Square Response:

You can construct a filter which (1) has relatively few weights, (2) Has a “sort of” square
response and (3) has fairly small negative side lobes.

R()

1.0

Compromise Response Function

A

B C

The larger the ratio A/B the larger side lobes one must accept. Some weights are
negative.
You can find a number of these in the literature and in numerous software packages. In
the next section we will show how to construct centered, non-recursive filter weights to
order.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 199

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 199

7.5 Construction of Symmetric Nonrecursive Filters

7.5.1 Fourier Construction of filter weights

In this section we will describe methods for the construction of simple non-recursive
filters. Suppose we consider a simple symmetric non-recursive filter

 yn = Ckxn k

k= N

N

where Ck =C k (7.7)

Time-Shifting Theorem:

 To perform a Fourier transform of (7.7), it is useful to first consider the time-
shifting theorem. Suppose we wish to calculate the Fourier transform of a time series f(t),
which has been shifted by a time interval t=a. Begin by substituting into the Fourier
integral representation of f(t).

 f (t ± a) =
1

2
F() ei (t±a) d

 f (t ± a) =
1

2
e±i a F() ei t d (7.8)

From (7.10) we infer that the Fourier transform of a time series shifted by a time interval
is equal to the Fourier transform of the unshifted time series multiplied by the factor,

 z = ei t (7.9)

We can Fourier transform (7.7) and use the time shifting theorem (7.8) to obtain

 Y () = Cke
i k t

k= N

N

X() (7.10)

Where Y() and X() are the Fourier transforms of y(t) and x(t). Because Ck = C-k and

 cos x =
eix + e ix

2
 (7.11)

we can write (7.10) as

ATM 552 Notes: Filtering of Time Series Chapter 7 page 200

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 200

 R() =
Y ()

X ()
= C0 + 2 Ck cos k t()

k=1

N

 (7.12)

We can find the weights that would give a desired response function by transforming
(7.12) as follows. Multiply both sides of (7.12) by

 cos j t() j = 0,1,...,N

and then integrate frequency, , over the Nyquist interval 0 — / t

 cos j t()
0

/ t
H()d = 2Cj cos j t()

0

/ t
cos k t()d (7.13)

(7.13) becomes

 Ck =
1

cos k ()
0

H ()d (7.14)

 = t , so that 0 < ' < is the Nyquist interval. From (7.14) we can derive the
appropriate weighting coefficients from any arbitrary desired response H().

7.5.2 Computation of Response function for Symmetric Non-Recursive Weights

If we have a set of symmetric non-recursive weights, we can compute the response
function easily using (7.12). Let’s do a few examples:

The running mean smoother:

The running mean smoother replaces the central value on an interval with the average of
the values surrounding that point. The running mean can be taken over an arbitrary
number of points, e.g. 2, 3, 5, 7. Starting with (7.12) again,

 R() = C0 + 2 Ck cos k t()
k=1

N

 (7.15)

a running mean smoother has Ck = 1/(2N+1), where –N < k < N. The length of the

running mean smoother is 2N+1.

2N+1=3 R() =
1

3
+
2

3
cos t() 0 < <

t

ATM 552 Notes: Filtering of Time Series Chapter 7 page 201

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 201

2N+1=5 R() =
1

5
+
2

5
cos t() +

2

5
cos 2 t() 0 < <

t

2N+1=7 R() =
1

7
+
2

7
cos t() +

2

7
cos 2 t() +

2

7
cos 3 t()

These square weighting functions give damped sine wave response functions, which are
generally undesirable. A slightly tapered weighting function, such as the 1-2-1 filter
gives a much nicer response function.

1-2-1 Filter R() =
1

2
+
1

2
cos t() 0 < <

t

We have to alter (7.15) a bit to compute the response function for a 1-1 Filter, a running
mean that just averages adjacent values. The result is:

1 – 1 Filter R() = cos
1

2
t 0 < <

t

All these results are plotted in Figure 7.5.1. Note how the 1-2-1 filter cuts off more
sharply than the 1-1 filter (running mean 2), but does not have the ugly negative side lobe
of the 1-1-1 filter (running mean 3).

Figure 7.5.1. Response functions for running mean filters of length 2,3,5, and 7, plus the response
function of the 1-2-1 filter. Note the nasty negative side lobes of the running mean filters, which
have sinch functions shapes. The frequency interval runs from zero to the Nyquist frequency,
which is 0.5 cycles per time step, or radians per time step.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 202

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 202

7.5.3 Computation of General Low-Pass Symmetric Non-Recursive Filter

Suppose we wish to derive the coefficients of a filter whose response cuts off sharply at a
frequency , where 0.0 < < 1.0, as follows.

 H() =
1 <

0 >

 (7.16)

Then from (7.14) and (7.16) we have

 Ck =
1

cos k()
0

d (7.17)

 Ck =
1

k
sin k() (7.18)

Note that the amplitude of the coefficients drops off as k-1, which is rather slow. The
coefficients, or weights, Ck, are a sinc function in k, as shown previously in Section 7.4.
To get a really sharp cutoff we need to use a large number of weights. Usually we want
to keep the number of points to a minimum, because we lose N-1 data off each end of the
time series and because the computations take time. The computation time problem can
be alleviated with the use of recursive filters.

If we truncate (7.18) at some arbitrary value of N, then the response function will be less
sharp than we would like and will have wiggles associated with Gibb’s phenomenon.
This is shown in Figure 7.4.1 which shows the response function (7.12) for the weights
(7.18) for truncation of N=10, N=20, and N=50. The value of = 0.5 was chosen to cut
the Nyquist interval in the center.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 203

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 203

-0.2

0

0.2

0.4

0.6

0.8

1

1

0 0.1 0.2 0.3 0.4 0.5

R(9NL)
R(19NL)
R(49NL)

Fi
lte

r
R

es
po

ns
e

Frequency

Without
Lanczos Smoothing

Figure 7.5.2: Response function for the filter weights given by (7.15) for three values of N; N=9,
N=19 and N=49. =0.5, so that the cutoff is in the middle of the Nyquist interval, 0 < f< 0.5., at
0.25.

Lanzcos Smoothing of Filter Weights:

The wiggles in the response functions of Figure 7.5.2 have a wavelength of
approximately the last included or the first excluded harmonic of (7.12). We can remove
this harmonic by smoothing the response function. The running mean smoother exactly
removes oscillations with a period equal to that of the length of the running mean
smoother. The wavelength of the last harmonic included in (7.12) is 2 /N; so smooth the
response function in the following way:

 ˜ H () =
N

2
H()d

/ N

/ N

 (7.19)

The running mean filter has no effect on the average, so substituting (7.12) into (7.19) we
obtain:

ATM 552 Notes: Filtering of Time Series Chapter 7 page 204

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 204

 ˜ H () = C0 +
N

2
2 Ck cosk * d *

k=1

N

/ N

+ / N

= C0 +
N

Ck cosk * d *

/ N

+ / N

k=1

N

= C0 +
N Ck

k
k=1

N

sin k + / N()[] sin k / N()[]{ }

 (7.20)

Expanding the sines and collecting terms, we obtain

 ˜ H () = C0 + 2
sin

k

N

k

N

 k=1

N

Ck cos k(). (7.21)

The running mean smoother of the response function is equivalent to multiplication of
filter weights by

 sinc
k

N

These factors are sometimes called the sigma factors. Note that the last coefficient, CN,
disappears entirely because the sigma factor is zero (sin = 0).

 Figure 7.5.3 shows the response functions for the new set of weights determined by
smoothing the response function.

 ˜ C k = sin c
k

N

 Ck for 1 k N. (7.22)

ATM 552 Notes: Filtering of Time Series Chapter 7 page 205

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 205

-0.2

0

0.2

0.4

0.6

0.8

1

1

0 0.1 0.2 0.3 0.4 0.5

R(9L)
R(19L)
R(49L)

R
es

po
ns

e
Fu

nc
tio

n

Frequency

Lanczos Smoothing
Applied

Figure 7.5.3: As in 7.5.2, but with Lanczos smoothing of weights and response function.

The wiggles are reduced by the Lanzcos smoothing, but the frequency cutoff is
somewhat more gradual. The changes to the weighting functions for the N=9 and N=19
cases are shown in Fig. 7.5.4. The sigma factors reduce the magnitudes of the weights as
k approaches N.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

W(9L)
W(9NL)

Fi
lte

r
W

ei
gh

t

Index

Figure 7.5.4: Filter weights for raw (dashed) and Lanczos smoothed (solid) response
functions for case of N=9.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 206

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 206

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

W(19L)
W(19NL)

Fi
lte

r
W

ei
gh

ts

Index

Non-Recursive Filter Weights
With and Without Lanczos Smoothing

Figure 7.4.3b: Filter weights for raw (dashed) and smoothed (solid) response functions
for case of N=19.

7.6 Recursive Filters

 The filters we have discussed so far are obtained by convolving the input series
x(n t) = xn with a weighting function wk, in the following way.

 yn = wk xn+ k
k= K

K

 (7.23)

Such filtering schemes will always be stable, but it can require a large number of weights
to achieve a desired response function. If greater efficiency of computation is desired,
then it may be attractive to consider a recursive filter of the general form,

 yn = ak xn k

k=0

K

 + bj yn j

j=1

J

 (7.24)

In this case the filtered value depends not only on the unfiltered input series, but also on
previous values of the filtered time series. In general, sharper response functions can be
obtained with fewer weights and thereby fewer computations than with non-recursive

ATM 552 Notes: Filtering of Time Series Chapter 7 page 207

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 207

filters like (7.23). The method of constructing the weights for a recursive filter from a
desired response function is not as easy as with convolution filters, and the filtering
process is not necessarily stable.

7.6.2 Response Function for General Linear Filters:

Let's rearrange (7.24),

 yn bj yn j

j=1

J

= ak xn k

k=0

K

 (7.25)

then Fourier transform (7.25), and finally utilize (7.8) and (7.11) to yield.

 Y () 1 bj z
j

j=1

J

= X() ak z
k

k=0

K

From which we obtain,

 H () =
Y ()

X()
=

ak z
k

k=0

K

1 bj z
j

j=1

J
 (7.26)

Here H() is the system function of the general recursive filter (7.24) and measures the
ratio of the Fourier transform of the output function to the input function. In general
H() will be complex for recursive filters, which means that recursive filters will
introduce a phase shift in the frequencies that they modify. This is because the filters are
not symmetric, in general. Physically realizable filters, as might be employed to real-
time data or in electric circuits, cannot be symmetric, since the future data are not know
at the time the filtration of the present value must be produced. The real amplitude
response function can be obtained from

 R() 2 = H()H()* (7.27)

where the asterisk indicates the complex conjugate.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 208

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 208

7.6.3 A Simple Recursive Filter

We can illustrate some important facts about recursive filters by considering the
simple example of a recursive filter given by,

 yn = xn + 0.95yn 1 (7.28)

The response function for this filter can be gotten from the general formula (7.26).

 H() =
1.0

1.0 0.95z 1 (7.29)

We can find the equivalent non-recursive filter by dividing out the rational factor in
(7.29) to obtain a polynomial in z. The result is

H() =
1.0

1.0 0.95z 1 = 1.0 + 0.95z
1
+ 0.9025z 2

+ 0.8574z 3
+ 0.8145z 4 + .. . (7.30)

Notice how slowly the coefficients of the polynomial decay. These coefficients are also
the weights of the equivalent non-recursive filter. Thus many, many points are necessary
to replicate the effect of the recursive filter (7.28) with a non-recursive filter.

7.6.4 Impulse Response of a Recursive Filter:

It is important to know how many data points a recursive filter must pass over
before its response begins to settle out. This will indicate how many points must be
disregarded off the end of a time series that has been filtered recursively. We can address
this question by asking how the filter responds to a unit impulse time series of the form.

 xn =
1.0 n = 0

0.0 n 0

 (7.31)

The time series that results from filtering the time series (7.31) can be called the

impulse response of the filter. One can verify that the filter (7.28) acting on the input
time series (7.31) will produce the following filtered time series.

y0=1.0, y1=0.95, y2=0.9025, y3=0.8574, y4=0.8145, ... (7.32)

The impulse response(7.32) of the recursive filter (7.28) decays just like the coefficients
of the equivalent nonrecursive filter, very slowly. So we conclude that we lose about the
same number of endpoints with both types of filter. The only apparent advantage of the
recursive filter is that it requires far fewer computations to achieve the same effect.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 209

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 209

Unless a large amount of data must be processed, the easiest filter to implement that
provides the desired functionality should be preferred.

The phase errors introduced by recursive filters can be reduced or eliminated by
passing over the time series twice, once in the forward direction and once backward in
time. The resulting amplitude response function is the square of the response function for
a single application.

7.7 Construction of Recursive Filters

The construction of appropriate weights from a system function, or response function of
desired shape is not quite as straightforward for recursive filters as for non-recursive
filters, and requires different mathematics. How do we find the appropriate polynomial
in z that produces the desired system function as described in (7.24)? Recall that z maps
into the unit circle in the complex plane, as the frequency varies from zero to the Nyquist
frequency. For a recursive filter to be stable, all zeros of the polynomial in the system
function must be within the unit circle. It is also useful to realize that the z transform is
linear, so that the system function of the sum of two filters is the sum of the system
functions for each filter. Also, if two filters are applied successively, the system function
of the result is the product of the system function for the two filters.

The construction of recursive filters, that is finding the appropriate weights, can be
simplified by transforming the z variable to a w variable defined in the following way.

 z = ei t
=
1 + iw

1 iw
 (7.33)

or

 w = i
1 z

1 + z

 (7.34)

This maps the unit circle in z space onto the real w axis, < w < , and the stable zone
inside the unit circle in z into the upper half of the complex w plane. The idea is to
choose R() as a simple function of w that produces the desired response. Choose the
roots of this function that form a stable filter, i.e. Im(w) 0 , to form the filter in w, then
use the transformation to convert to a stable, rational polynomial in z. Then the
coefficients are simply read from this polynomial, suitably factored.

7.7.1 Butterworth Filters

As a common example we can consider the Butterworth family of filters with response
functions defined as follows.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 210

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 210

 H()H()* =
1

1 +
w
wc

2N (7.35)

The filter has the desirable property of smoothness and high tangency at the origin and
infinity. It contains two design parameters, wc and N, which can be used to design a filter
with a cutoff at the desired frequency and the appropriate amount of sharpness to the
cutoff. Using the following figure from Hamming(1989) to define the characteristics of
the filter response function, we can derive formulas for the design parameters.

1

wp ws

 1
1+ **2

 1
A**2

Figure: Diagram of a Butterworth filter response function showing some of the design
parameters, wp, ws, and A.

 N =

ln / A2 1

ln wp / ws()
 (7.36)

 wc =
wp
1/ N (7.37)

We see, as might be expected, that a sharp cutoff requires a Butterworth filter of high N.
To find the coefficients of a recursive filter from (7.35) we first factor the denominator.
The roots of the equation,

 1 +
w

wc

2N

= 0 (7.38)

are

w

wc

2N

= 1 = ei 2k+1() (7.39)

ATM 552 Notes: Filtering of Time Series Chapter 7 page 211

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 211

or

w

wc

 = 1 = ei 2k+1()/ 2N (k = 1, 2, 3, .. . 2N 1) (7.40)

of these zeros, only those corresponding to (k=1,2,3, N-1) are in the upper half plane
and so constitute a stable filter. They are the complex conjugates of the zeros in the
lower half plane. We choose these zeros to form the system function for our filter. The
zeros can be paired in such a way that k is paired with N-k-1. For each pair we have,

w

wc
ei 2k+1()/ 2N

w

wc
ei 2N 2k 1()/2N

 (7.41)

or

 =
w

wc
ei 2k+1()/ 2N

w

wc
+ e i 2k+1()/ 2N

 =
w

wc

2

2i sin
2k +1()

2N

w

wc

 1 (7.42)

Substituting the expression (7.33) for w in terms of z, we obtain,

1 / wc[]

2 1 z()
2 + 2 sin 2k + 1() / 2N{ } 1 z2() 1 / wc[] 1 + z()

2

1 + z()
2 (7.43)

This is one real quadratic factor corresponding to two complex conjugate linear factors
derived from the two roots corresponding to k and N-k-1. There are at most N/2 of these
quadratics.

If N is odd there will be one additional linear factor left over, corresponding to k=(N-
1)/2, and therefore

w

wc

 = ei /2 , (7.44)

which has the factor,

w

wc

 ei / 2

=
w

wc

 i

 (7.45)

Substituting (7.33) gives

ATM 552 Notes: Filtering of Time Series Chapter 7 page 212

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 212

 i
1 / wc() 1 z() 1 + z()

1 + z

 (7.46)

Construction of a polynomial from its zeros leaves an undetermined multiplier. We can
set this multiplier by requiring that the system response function be one at zero
frequency, where z=1 and w=0. To achieve this we must multiply the quadratic factors
(7.43) by -1, and the linear factor (7.46) by -i.

The system function is formed by multiplying together, in the denominator, all the
quadratic terms and the final linear term if N is odd.

 H() =
 1+ z()2

QuadraticFactors
k=0

N / 2 1

 ; if N even (7.47)

and we would multiply (7.47) times the inverse of (7.46) if N is odd. We could carry out
the multiplications in (7.43), which would give us polynomials in z of order N in the top
and bottom. Alternatively, we could derive the recursive filter corresponding to each
factor in the polynomial and apply them in succession to obtain the identical result, since
the product of two system response functions corresponds to the system response
function of applying the two filters successively. Each quadratic factor corresponds to
the partial system response function,

 Hk () =
 1+ z()2

1 / wc[]
2

1 z()2 + 2sin 2k +1() / 2N{ } 1 z2() 1 / wc[] 1+ z()2
 (7.48)

Let's rearrange this a little

Hk () =
wc

2 1 + 2z 1 + z 2()
wc

2
+ 2wc sin 2k +1() / 2N{ }+ 1() + 2 wc

2 1() z 1 + wc
2
+1 2wc sin 2k +1() / 2N{ }() z 2

This is now in the form where we can deduce the coefficients of the corresponding filter
simply by reading off the coefficients, and performing the inverse z transform. If we
rewrite (7.49) by substituting symbols for the coefficients,

 Hk () =
a0 + a2 z

1 + a3 z 2

b0 + b1 z 1 + b3 z 2 (7.50)

Then we can use (7.21) and (7.25) to infer that the corresponding recursive filter is,

ATM 552 Notes: Filtering of Time Series Chapter 7 page 213

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 213

yn
k = a0 xn + a1 xn 1 + a2 xn 2

 + b0 yn + b1 yn 1 + b2 yn 2
 (7.51)

Thus we get a simple second order recursive filter for each quadratic, which we must
apply in sequence to get the full filter of order 2N. We must also apply the linear part if
N happens to be odd. Using the design parameters for the Butterworth filter to select N
and wc one can construct filters to suit many purposes.

Matlab has some programs for generating the filter weights of Butterworth and other
recursive filters. Butterworth filters are smooth and monotonic, which are generally good
characteristics for data work. If a sharper cutoff is required and negative side lobes are
tolerable, there are other filtering schemes with these characteristics.

From within Matlab, we can enter,
>>[b,a]=butter(9,0.5)
which gives us the coefficients b and a from (7.21) and (7.25) for a Butterworth filter of
order 9, so there are 9 a’s and b’s, 9 weights for the recursive and nonrecursive parts of
the filter process. We have have asked for filter weights that cut the Nyquist interval at
the midpoint (0.5). Matlab also provides a function for evaluating the filter response of
this low pass filter.
>>[h,w]=freqz(b,a,128)
>>p=abs(h)
>>f=w/(pi*2)
>>plot(f,p)
The result of this last command is similar to the following graph, where we compare the
filter response for a ninth order Butterworth filter with that of a fourth order Butterworth
filter, with the frequency cut taken at the same place halfway across the Nyquist interval
of of frequencies (0 < f < 0.5).

The coefficients of the fourth order filter are given by the program:

an = {1.0, 0.0, 0.486, 0.0, 0.0177}

bn = {0.0946, 0.3759, 0.5639, 0.3759, 0.0940}

and these can be inserted into (7.21) to make a practical filter in a FORTRAN or C
program, or the filtering can be done within Matlab.

ATM 552 Notes: Filtering of Time Series Chapter 7 page 214

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 214

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5

Fr
eq

ue
nc

y
R

es
po

ns
e

Frequency

Butterworth Recursive Filter Response
Frequency cut off at 0.5 Nyquist

9th order(solid) and 4th order(dashed)

The frequency cutoff is pretty good for the ninth order Butterworth filter. It is interesting
to look at the impulse response of this filter (what it produces when you filter a time
series that has one leading 1.0 followed by all zeros).

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

Butterworth Filter Impulse Response

4th order
9th order

Im
pu

ls
e

R
es

po
ns

e

Time Step

The impulse response is the influence function for the first data point of the time series,
and tells you how much data at the beginning of the time series will be corrupted by the

ATM 552 Notes: Filtering of Time Series Chapter 7 page 215

Copyright 2008 Dennis L. Hartmann 3/17/08 4:00 PM 215

startup. The data point to the immediate left of the first data point would have had the
same influence, shifted one time step to the left. For the 9th order Butterworth filter with
a frequency cutoff at 0.5 takes about 20 days to settle down to a negligible level. As you
might expect, the lower order filter, with the smoother response function, takes less time
to settle out- about 10 days.

References on Filtering

Duchon, C. E., 1979: Lanzcos filtering in one and two dimensions. J. Appl. Meteor., 18,
1016-1022.

Hamming, R.W., 1989: Digital Filters. Prentice Hall, 284pp.

Holloway, J.L., 1958: Smoothing and filtering of time series and space fields. Adv.
Geophys., 4, 351-389.

Jackson, L. B., 1996: Digital filters and signal processing: with MATLAB exercises.
Kluwer Academic Publishers, 502 pp.

Kuc, R., 1988: Introduction to Digital Signal Processing. McGraw Hill, 474pp.

Little, J.N., L. Shure, 1988: Signal Processing Toolbox for use with MATLAB. The Math
Works.

