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6.4  Singular Spectrum Analysis 
 

One can use eof analysis to look for structure in a time series by doing an 
eigenanalysis of the lagged covariance matrix.  It has been argued that this is useful in 
nonlinear systems analysis because you don’t have to choose the structure functions a 
priori, but you let the data themselves choose the temporal structures.  See Ghil et 
al.(2002) for a review paper. 

 
Suppose that we have a time series x of length N.  Suppose that we choose some 

maximum lag M and compute the M  M lag autocovariance matrix, . 
 

 Cij =
1

N M
x(k + i) x(k + j)

k=1

N M

 (6.109) 

 

If we do an eigenanalysis of this covariance matrix, we will obtain temporal 
structures that explain the maximum possible amount of the temporal autocovariance on 
an interval of measure M.  The eigenvalues will be the amount of covariance in time 
explained by each eigenvector.  You can then reconstruct the time series at any point n, 
by expanding the data in the basis set of eigenfunctions.   

 

 x(n) = ak (i)ek ( j)

i+ j=nk=1

M

 (6.110) 

 
where n=i+j, ek ( j) is the jth element of the kth eigenvector, and ak (i)  is an expansion 
coefficient for the kth eigenvector beginning at the point i.    

 
It is very easy to write an m-file to do this kind of ‘singular spectral analysis’ in 

Matlab.  It is interesting to see what such a program does with time series of various 
types, and how the shapes you get are sensitive to the window length M.  Let’s start by 
looking at a red noise time series, with a one-lag autocorrelation of 0.5.  Let’s set N=4000 
and M=50, to start with.  The eigenvalue spectrum and the first three eigenvectors are 
shown below. 
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Fig. 6.27  SSA analysis of Red Noise with an autocorrelation of 0.5, using a window of 
length 50 time steps. The eigenvalue spectrum is on the left and the first three 
eigenvectors on the right.  The first EOF is the smoothest. 
 
 
If we keep everything the same, except we make the data window 70 instead of 50, the 
eigenvalue spectrum remains similar, but the eigenvectors change to fit the domain. 
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Fig. 6.28  Same as Fig. 7.27, except that the data window (embedding dimension) is 
taken to be 70 instead of 50. 
 

It has been argued that SSA might be better than Fourier spectral analysis because 
the structures are not determined a priori, but rather are determined from the structure in 
the data themselves.  I doubt if this is true in general, for the following reasons.  SSA is 
still a linear RMS fitting method.  Fourier analysis is optimal in an RMS sense.  
Therefore, the functions we are likely to get from SSA will have shapes similar to the 
Fourier modes on the interval M that we choose.   The eigenvalues will order these 
empirical Fourier modes in such a way that the dominant periods will appear first.  This 
is already somewhat apparent from the analysis of red noise above.  The structure 
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functions look like Fourier modes.  Let’s now suppose that the input time series is a saw 
tooth wave with a period of 20 time units, as pictured below. 
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Fig. 6.29  A sawtooth wave with a period of 20 time units. 
 
 
Let’s take 4,000 units of this and subject it to SSA with a window length of M=80.  This 
should give the SSA method a good chance to come up with a sawtooth structure 
function, if it can, since we have chosen an embedding dimension that is an integral 
number of sawtooth wave period..  As seen below, in fact it doesn’t.  It chooses to use 
Fourier modes with the appropriate length scales.  The first three temporal structures are 
indistinguishable from sines and cosines with the appropriate scales to explain the input 
data.  We could have gotten the same information from Fourier spectral analysis.  An 
advantage of Fourier spectral analysis is that the techniques for determining the statistical 
significance of the results are better developed. 
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Fig. 6.30  SSA analysis of a sawtooth wave with a period of 20 time units, using a 
window of length 80 time steps. The eigenvalue spectrum is on the left and the first three 
eigenvectors on the right. 
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6.4b  SSA:  Dynamical Systems Approach 
 

Broomhead and King(1986) suggested using a very small embedding dimension 
to look for structure in time series data from dynamical systems.  Much of the emphasis 
was placed on looking at the phase diagrams, which are the trajectories of the PCs of the 
first few modes.  This is designed to seek not periodicities, but rather repeated trajectories 
in phase space.  We can illustrate this with the sawtooth time series with added noise.  
Noise makes things more problematic.  In geophysics we are almost always dealing with 
high noise systems, if they are also complex systems.  As our test time series we use a 
sawtooth time series with various levels of noise present.  We consider cases in which the 
signal is ten times, three times and two times the noise level.  A portion of each of these 
time series is shown below. 
 
Sawtooth is 10 times noise amplitude 

0 20 40 60 80 100 120 140 160 180 200
−15

−10

−5

0

5

10

15
input data, amp2=10, alpha=0.5

time

valu
e

 
Fig. 6.31  A sawtooth wave with a period of 20 time units, with added noise that is 1/10 
as big as the signal. 
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Fig. 6.32 A sawtooth wave with a period of 20 time units, with added noise that is 1/3 as 
big as the signal. 
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Fig. 6.33 A sawtooth wave with a period of 20 time units, with added noise that is 1/2 as 
big as the signal. 
 

We compute eigenvalue spectra for embedding dimension of 7 for the three 
amplitude levels of 10, 3, and 2 times the noise level are shown below.  The shapes are 
similar, but the magnitude of the eigenvalues are different because of the amplitudes we 
put in. 
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Fig. 6.34  Eigenvalue spectra for SSA of the sawtooth wave with three levels of noise.  
Note how similar they look in terms of basic shape. 
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Below are the first three eigenvectors for the SSA analysis of embedding 

dimension 7 for the case with the sawtooth amplitude 10 times the noise amplitude.  The 
eigenvectors are very simple, almost harmonic, structures.  The first is nearly a constant.  
The second is a trendline. The third is like a cosine wave.  These do not change much as 
the noise increases relative to the signal.  They are picking out the amplitude, trend and 
curvature of the time series on an interval of 7. 
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Fig. 6.35  Eigenvectors for SSA of the sawtooth wave with three levels of noise. 
 
Next we show phase plots of the principal components of the first two structure functions 
for the cases with amplitude 10, 3 and 2.  The PCs are related in time as they trace out the 
sawtooth.  So we get well-defined trajectories in phase space.  Note that the phase 
trajectories are less well defined as the noise level gets greater relative to the sawtooth 
signal. 
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Fig. 6.36  Phase plots where the PC’s of the first two eigenvectors of the SSA as a 
function of time, are plotted versus each other.   
 
Below we show the same comparison for the phase plots of PC 1 and 3, for the cases of 
amplitude 10 and 3, and we see similar things. 
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Fig. 6.37  Same as Fig. 6.37, except for the first and third eigenvectors of the SSA. 
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So perhaps if you have a dynamical system with low noise, but some organized 

chaotic behavior, you can detect the attractor trajectories using this kind of small 
embedding dimension singular spectral analysis.  Broomhead and King(1968) show that 
this works for the Lorenz model. 
 
 
6.5  Maximum Entropy Spectral Analysis: 
 
Maximum entropy spectral analysis is a technique that can be used when you have a short 
period of record, but you need more spectral resolution that you can get by doing 
traditional Fourier Spectral analysis on the available data (Press, et al. 1992, page 565).  
It provides this extra spectral resolution by extending the autocovariance matrix in a way 
that adds the least information to the covariance matrix (maximum entropy).  It will tend 
to strongly localize spectral peaks, so you can determine their location very precisely.  
The problem is that it has adjustable parameters that can be used to get a spectrum of 
arbitrary sharpness.  The tools for assigning statistical significance to the results of such 
an analysis are not yet developed.  It is best used in conjunction with traditional Fourier 
spectral analysis, after you have established the significance of periodicities in the time 
series of interest. 
 
 
6.6  Multi-Taper Method 
 

In the Welch overlapped segment averaging (WOSA) method that we described 
in section 6.2.5, a Hanning window was applied to individual segments that over 
overlapped by 50% to give a spectrum with minimal leakage, a high number of degrees 
of freedom and which uses the data effectively except near the beginning and end of the 
time series.  The Hanning window is tapered, which gives the spectrum its desired 
frequency response.  As the name implies, the multi-taper method (Thomson, 1982, 
1990a) uses a set of different data tapers to try to provide an optimal estimate of the 
spectrum of the time series.  A nice description is given in Percival and Walden(1993).  
The idea is to choose a set of tapers that provide optimal resolution, minimum leakage 
and are orthogonal.  One comes up with a set of such tapers that are a set of harmonics, 
and then one uses the average of spectra computed using a number of these tapers.    

 
 

6.7 Higher-Order Spectral Analysis 
 
For nonlinear systems, the linear reasoning underlying the analysis of variance 

may not capture the relevant dynamics.  For this reason people are beginning to 
experiment with higher-order polyspectra (e.g. Nikias and Petropulu, 1993).  These 
higher order spectra will be zero if the variable has a Gaussian distribution.  The simplest 
thing to consider is the bispectrum, which is obtained as the Fourier Transform of the 
bicovariance function.  The bispectrum is a two dimensional contour plot, since 
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frequency pairs are involved instead of the power at a single frequency. 
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Source code for a Singular Spectrum Analysis Toolkit can be found at  
“http://www.atmos.ucla.edu/tcd/ssa/index.html” 
 


