
ATM 552 Notes   Cross Spectrum Analysis     Section 6c page  165 

Copyright 2008   Dennis L. Hartmann 2/6/08   5:54 PM 165

6.3  Cross Spectrum Analysis 
 

Cross spectral analysis allows one to determine the relationship between two time 
series as a function of frequency.  Normally, one supposes that statistically significant 
peaks at the same frequency have been shown in two time series and that we wish to see 
if these periodicities are related with each other and, if so, what the phase relationship is 
between them.  One may extend this concept a bit by considering whether it may make 
sense to do cross spectral analysis even in the absence of peaks in the power spectrum.  
Suppose we have two time series whose power spectra both are indistinguishable from 
red noise?  Under these circumstances what might cross-spectral analysis still be able to 
reveal?  It might be that within this red noise spectrum there are in fact coherent modes at 
particular frequencies.  We can test for this by looking at the coherency spectrum. 

 

Suppose we have two time series x(t) and y(t) and we want to look for relationships 
between them in particular frequency bands.  First consider harmonic analysis in terms of 
line spectra: 
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  (6.72b) 

Because of the orthogonality of the functions for evenly spaced data we can write the 
covariance between them as a sum of contributions from particular frequencies. 
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1
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= the cospectrum of x and y

 (6.73) 
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6.3.1  Complex Exponential Expansion: 
 

Very often it is more convenient to use the complex exponential representation of 
a Fourier series, rather than the real trigonometric form given above.  We can write, 

 x = x + Fx k( ){ }
k= N

2

N
2

y = y + Fy k( ){ }
k= N

2

N
2

 (6.74) 

where 

 

Fx k( ) = Cxke
i
2 kt

T
 
 

 
 ei xk =

1

2
Axk iBxk( )e

i
2 kt

T
 
 

 
 

Fy k( ) = Cyke
i
2 kt

T
 
 

 
 ei xk =

1

2
Ayk iByk( )e

i
2 kt

T
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A, B, and C are all real quantities.   
 
In terms of these complex F's then we can write the variance (power) of x as: 

 

x' 2 = Fxx
k=N2

N
2

k( ); Fxx k( ) = 2Fx k( ) Fx
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 (6.76) 

where the superscript asterisk indicates the complex conjugate, and the covariance as: 

 x' y' = Real Fxy k( )
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i xk yk( )

 (6.78) 
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6.3.2  Complex Cross-Spectrum 

We can write Fxy(k) as 

 Fx k( )Fy
* k( ) =

1
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Axk iBxk( )e
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AxkAyk + BxkByk + i AxkByk AykBxk( ){ }

 (6.79) 

This is the complex cross spectrum between the two times series x(t) and y(t). 
 
For real input series x(t), y(t) 
 
 Ak  =  A-k     and    Bk  =  -B-k  so that 

 Fx(k) Fy*(k)  =  Fx(-k) Fy*(-k) 

 so that 

 Fxy k( )+ Fxy k( ) =
1

2
Axk Ayk + Bxk Byk + i AxkByk AykBxk( ){ }  (6.80) 

This is the cross-spectrum of x at y for wave k  and its real part  =  cospectrum  =  x'y'   
Its imaginary part  =  quadrature spectrum. 
 

In complex notation the cross spectrum can be written 

 

Fxy k( ) = CxkCyk e
i xk yk( )

= CxkCyk cos xk yk( )+ i sin xk yk( )( )
xk = yk real

xk yk ± 2
complex

 (6.81) 

Thus the cospectrum (the real part) is the in-phase signal and the quadrature spectrum 
(complex) is the out-of-phase signal. 
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6.3.3  Spectral Coherence: 

For a single line spectrum k we must have 

 Coh2 =
Fxy k( )

2

FxxFyy
=

CxkCyk( )
2

Cxk( )
2
Cyk( )

2 =1   show (6.82) 

Let‘s consider what happens if we add two wavenumbers together to get power spectra, 
cospectra, quadrature spectra, and coherence-squared for the combined cross-spectral 
analysis.  This can be accomplished by averaging adjacent wavenumbers within a single 
spectra, or by averaging the same wavenumber from separate realizations of the 
spectrum.   
 

Suppose we have two spectral coefficients k=1 and k=2 for two time series x and y, as 
follows 

 Fx k( ) = Cxk exp i2 k
t

T
 
 
 

 
 
 
exp i xk( ); k =1,2  (6.83a) 

 Fy k( ) = Cyk exp i2 k
t

T
 
 
 

 
 
 
exp i yk( ); k = 1,2  (6.83b) 

If we average the power spectra for the two time series over the two wavenumbers, we 
obtain, 
 

 P x = Cx1
2
+Cx2

2 ; P y = Cy1
2
+Cy2

2
 (6.84) 

The averaged cross-spectrum is given by 

 F xy = Cx1Cy1 exp i x1 y1( ){ } + Cx2Cy2 exp i x2 y2( ){ }  (6.85) 

Introduce the following shorthand notation to make manipulation less space consuming. 
 

 

A1 = Cx1Cy1 A2 = Cx2Cy2

1 = x1 y1 2 = x2 y2
 (6.86) 

So that we have, 

 F xy = A1exp i 1{ }+ A2 exp i 2{ }  (6.87) 
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Next compute the amplitude of the cross-spectrum. 

 F xy
2
= F xyF xy

*
= A1 exp i 1{ }+ A2 exp i 2{ }( ) A1 exp i 1{ }+ A2 exp i 2{ }( )

= A1
2
+ A1A2 exp i 1 2( ){ }+ A2A1exp i 2 1( ){ }+ A2

2

= A1
2 +2A1A2 cos 1 2( )+ A2

2

 (6.88) 

Returning now to the original unshortened notation 

 F xy
2
= F xyF xy

*
= Cx1

2 Cy1
2
+ 2Cx1Cy1Cx 2Cy2 cos 1 2( )+Cx2

2 Cy2
2

 (6.89) 

The purpose of this exercise was to calculate the coherence-squared, for which the 
formula in the present context is, 

 Coh2 =
F xy

2

P x P y
 (6.90) 

We have the numerator; we now can write down the denominator 
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2 Cy1

2
+Cx1

2 Cy2
2
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2 Cy1
2
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2 Cy2
2

 (6.91) 

And so putting the whole mess together by substituting (6.91) and (6.89) into (6.90), we 
have, 
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Cx1
2 Cy1

2 +2Cx1Cy1Cx2Cy2 cos 1 2( ) +Cx2
2 Cy2

2

Cx1
2 Cy1

2
+ Cx1

2 Cy2
2
+Cx2

2 Cy1
2
+Cx 2

2 Cy2
2  (6.92) 

First of all, notice that the coherence squared will be largest when the phase differences 
between the two time series at the two different frequencies, 

  1 and 2 , are equal.  This 
means that the phase difference between x and y remains approximately constant in the 
two adjacent frequencies corresponding to k1 and k2.  If the two time series do not have 
the same phase relationship for the two wavenumbers we average together, then the 
coherence will decrease.  If we have a real physical relationship, then we expect the 
phase relationship to remain stable as we average frequencies or realizations together.  
The coherence statistic tests for this. 
 
Note, however, that this is not all that the coherence tests for.  If we suppose that the 
phase differences are the same, so that the cosine term is unity, we still do not have a 
coherence of unity.  The coherence also depends on the relationship of the amplitudes.  
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The terms on the left and right in the numerator and denominator are identical.  It is the 
central term on the top and the middle two terms on the bottom that are potentially 
different.  If we suppose that the phase difference is constant so that the cosine is unity, 
then we can use the inequality below to show that the coherency cannot exceed unity. 
 

 Cx1
2Cy2

2
+Cx2

2 Cy1
2 2Cx1Cy1Cx2Cy2  (6.93) 

Under what conditions could the equality hold in the above expression?  If the equality 
holds, and the phase differences are the same, then the coherence is one, its maximum 
possible value.  The equality would hold if all of the C’s were equal, of course, but it 
would also hold if the amplitude ratios between x and y were the same in the two 
realizations, as follows. 

 
Cx1
Cy1

=
Cx 2
Cy2

 (6.94) 

So the coherence will be unity when realizations are averaged, only under the 
conditions that the two realizations averaged together show the same phase 
difference between the two variables and the same amplitude ratio between the two 
variables.  In short, the two variables are linearly related to each other.  The 
coherence thus shows how well these two conditions are satisfied. 
 
For a continuous cross spectrum: 
 

 xy k( ) = CO k( )+ iQ k( ) = xy exp i x{ }  (6.95) 

 coh2 k( ) =
xy k( )

2

xx k( ) yy k( )
=
CO2 k( )+Q2 k( )

xx k( ) yy k( )
 (6.96) 

 

xy k( )  continuous cross power spectrum between x and y

xx k( )  continuous cross power spectrum of x

yy k( )  continuous cross power spectrum of y

 

 
•  For two unrelated (linearly) time series x and y the coherency coh2 (k) decreases 
rapidly with the number of degrees of freedom in the spectral estimate since the phases 
between the two time series are essentially random as a function of frequency.  For two 
linearly related time series the phase difference and amplitude ratios will remain more 
constant and the coherency will drop off more slowly as we add realizations and thereby 
significance to our estimates of coherence. 
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•  Note the similarity between the coherence and the correlation coefficient. 

 r2 =
x' y'( )

2

x'2 y' 2
R2 k( ) = coh2 k( ) =

CO k( )+ iQ k( )2

xx yy
 (6.97) 

The coherence, however, takes into account out-of-phase relationships and can examine 
the variance of two signals in a selected frequency range. 
 
 

In the lag correlation method we compute the cross spectrum by performing the Fourier 
transform of the cross-correlation function 

 xy k( ) = CO k( )+ iQ k( ) = rxy( )

L

L

e ik d  (6.98) 

 If the maximum lag L is less than N/2 then the cross-spectrum will be smoothed over and 
above the smoothing inherent in the data window and the number of degrees of freedom 
can be increased accordingly. 
 
 Since rxy ( ) is not necessarily symmetric (there may be a phase lag between the time 

series), xy will have real, COxy, and imaginary, Qxy, parts. 
 
 The coherence-squared has a probability distribution as shown in the table on the 
page 108.  We can test whether two time series have any relation to each other by testing 
whether we can reject a null hypothesis that there is no relation between the two time 
series. 
 This table gives the upper limits on the coherence squared for a pair of random 
variables and is intended for a priori usage. 
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An illustrative diagram: 
 

Q(k)

Co(k)

xy

xy

 

Fig. 6.22  A phase diagram showing the relationship between the Cospectrum and 

Quadrature spectrum, plotted along the x and y axes, respectively, and the phase between 

the two time series. 
  
Recall that the phase has meaning only if the coh2 is significant and that the phase error 
increases as both the coh2 and d.o.f. decrease. 
 
 
 Consider the following:  Suppose we have a wave moving westward past a line of 
stations.  How will the cross-spectrum vary as a function of station spacing? 
 

A B C D E

• ••••

 

 

Fig. 6.23  A schematic showing a wave propagating past five stations A-E.  The wave 
propagates from left to right. 
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We can draw a diagram of the complex cospectra evaluated for each pair of points. 
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Fig. 6.24  Schematics showing the phase plots and phase angles for cospectra computed 

between various stations in Fig. 6.23. 

 

 

Table 6.2 shows the value of the coherence squared, or coherency, that must be attained 
to reject a null hypothesis of zero coherency at various probability points from 50% to 
99.9%.  These are given as a function of the number of degrees of freedom from 2 to 200.  
For example, for a confidence level of 95%, and with 10 degrees of freedom, the 
coherence-squared must exceed 0.283 to reject a null hypothesis of zero coherency.  The 
ultimate source for this table is a Sandia monograph by Amos and Koopmans(1963). 
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Table 6.2:  Probability Points of Distribution of Spectral Coherence 
squared coherence R2 

 

 Probability point in per cent 

DoF = n 50 90 95 99 99.9 
      

2 .500 .901 .951 .990 .998 
3 .293 .684 .776 .901 .968 
4 .206 .539 .632 .785 .901 
5 .159 .437 .527 .684 .823 
      
6 .130 .370 .450 .602 .748 
7 .109 .319 .393 .536 .684 
8 .094 .280 .348 .482 .627 
9 .083 .250 .312 .438 .578 

10 .074 .226 .283 .401 .536 
      

11 .067 .206 .259 .370 .500 
12 .061 .189 .238 .342 .466 
13 .056 .175 .221 .319 .441 
14 .052 .162 .206 .298 .412 
15 .048 .151 .193 .280 .389 

      
16 .045 .142 .181 .264 .370 
17 .042 .134 .171 .250 .350 
18 .040 .127 .162 .237 .334 
19 .038 .120 .154 .226 .319 
20 .036 .112 .146 .215 .305 

      
25 .029 .091 .118 .175 .250 
30 .024 .076 .098 .147 .212 
35 .020 .066 .084 .127 .185 
40 .018 .057 .074 .112 .162 
45 .016 .051 .066 .100 .145 
50 .014 .046 .060 .090 .132 

      
60 .012 .038 .050 .075 .111 
70 .010 .033 .042 .065 .096 
80 .009 .029 .037 .057 .084 
90 .008 .026 .033 .052 .075 
100 .007 .023 .030 .045 .068 

      
125 .006 .018 .024 .036 .054 
150 .005 .015 .020 .031 .045 
175 .004 .013 .017 .026 .039 
200 .003 .011 .015 .023 .034 
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6.4  Mixed Space-Time Spectral Analysis 

 Mixed space-time spectral analysis is a straightforward extension of harmonic analysis to 
two dimensions.  It is most convenient if the spatial dimension is cyclically continuous, 
such as in the case of latitude circles, or at least that the spatial dimension has fixed 
boundaries, like an ocean basin.  In such cases we can look for modes of variability in 
which spatial scales have particular temporal scales.  If the behavior is indeed harmonic 
(wavelike), then we expect mixed space-time spectral analysis to isolate any such modes 
that are present.  For example, if one did mixed space-time spectral analysis of a stringed 
instrument, one would definitely expect to find a definite relationship between the length 
scales and the time scales of the oscillations. 

Suppose we have a function of longitude, , and time, t.  We can write: 

 x , t( ) = Wk,±
±k

cos k ± t + k,±( )  (6.99) 

where +  and – correspond to westward- and eastward-moving waves, respectively 
(Hayashi, 1977). 
 

If we have such an expansion then we can write 

 Power Spectrum 

 Pk, ± x( ) =
1

2
W
k ,±
2  (6.100) 

If we have two time series x( , t) and x*( , t) we can write the cospectra between x and x* 
as (note that for the next few lines we have dispensed with the convention used 
heretofore that a starred quantity is a complex conjugate) 

 Kk1± x, x*( ) =
1

2
Wk1± Wk1±

* cos k1±
*

k1±( )  (6.101) 

and the quadrature spectrum as 

 Qk,± x, x*( ) =
1

2
Wk,± Wk,±

* sin k,±
*

k,±( )  (6.102) 

So that the coherency is written 

 Cohk,±
2 x, x*( ) =

Kk,±
2 x,x*( )+Qk,±2 x, x*( )
Pk± x( ) Pk± x*( )

 (6.103) 
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How do we obtain the expansion (6.99) in practice? 
 

1.)  First perform a zonal Fourier Transform to obtain sine and cosine coefficients at each 
time. 

  (6.104) 

Then Fourier transfer these sine and cosine coefficients in time. 

 Ck t( ) = Ak, cos t+ Bk, sin t  (6.105) 

 Sk t( ) = ak, cos t+bk, sin t  (6.106) 

These A, B, a, b can re-related to  

 
    
Wk1 ±

 

through a simple manipulation 

 
  
4Wk,±

2
= A b( )2 + B a( )2  (6.107) 

 
  

k,± = tan 1 B a( )

A b( )

 
 
 

 
 
 
 (6.108) 

This is all straightforward mathematics.  The important question is how to interpret the 
spectra obtained. 
 
A useful plot of the power spectrum 
 Pk,± x( )  

can be made by contouring it in wavenumber-frequency coordinates.  Although we have 
drawn smooth contours across wavenumber, for zonal wavenumber analysis only discrete 
wavenumbers exist.  If the variation of amplitude is rather smooth across wavenumber, 
this won’t be a disaster, but it should be kept in mind that only integral wavenumbers 
exist. 
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Fig. 6.25  Space-time spectral analysis plot showing contours of variance for an 
eastward moving wavenumber 6 with a period of 5 days. 
 
This contour plot is very simple to interpret.  It is an eastward-moving wave 6 with a 
period of 5 days.  But how do you interpret the spectrum contoured below? 

1/30 1/10 1/5-1/5 -1/10 -1/30
Eastward-MovingWestward-Moving

k

•

1

2

3

•

What's this?

 
Fig. 6.26  Space-time spectral analysis plot showing contours of variance wish maxima 
for wavenumber 2 at both eastward and westward traveling ten-day period. 
 
The plot above (Fig 6.26) could be either of two possibilities. 

a.) Eastward- and westward-moving waves, each with a 10-day period. 
b.) A stationary wave 2 with amplitude oscillating with a period of 10 days. 
 
How do you distinguish these two possibilities?   One way to approach this problem is to  
ask if the eastward and westward waves are related, are they coherent with each other, do 
they bear a constant phase relationship to each other (standing wave), or are the eastward 
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and westward waves linearly independent?  Two somewhat different approaches to this 
question have been presented.  One way to judge this is to formulate a coherence-squared 
between the eastward and westward waves Pratt (1976), and Hayashi (1977), JAM, 16, 
368-73.  Another method is to look at the coherence in time between the sine and cosine 
coefficients of a particular wavenumber.   Schafer, (1979), JAS, 36, 1117-1123 uses the 
coherence in time of the sine and cosine coefficients to ask whether what is seen are 
“waves” or “noise”. 


