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The Complex Fourier Transform: 
 
In previous sections we presented the Fourier Transform in real arithmetic using sine and 
cosine functions.  It is much more compact and efficient to write the Fourier Transform 
and its associated manipulations in complex arithmetic.  In a domain of continuous time 
and frequency, we can write the Fourier Transform Pair as integrals: 
 

f (t) =
1

2
F( )ei td

F( ) = f (t)e i tdt

 

 
Here f(t) is some real time series in the independent variable t, and F( ) is the Fourier 
Transform of f(t),  and is generally a complex number with a real and imaginary part.   
is the frequency in radians per unit time.  If the period is T, then the radial frequency is 
2 /T, and the frequency in cycles per unit time is 1/T. 
 
____________________________________________________________________ 
 
Parseval’s Theorem: 
 
The following theorem by Parseval is important in spectral analysis and filtering theory.  
It states that for two functions f1(t) and f2(t) with Fourier Transforms F1( ) and F2( ) 

we may perform the following manipulation. 

f1 t( ) f2 t( )dt = f1 t( )
1
2

F2( )ei td
 

 

 
 

 

 

 
 
dt

where f2 t( ) =
1
2

F2( )ei td

=
1

2
F2( ) f1 t( )ei tdt d

=
1

2
F2( )F1( )d

 

So that we may show, 
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f1 t( ) f2 t( )dt =
1

2
F2( )F1

*( )d( )

 

(6.30) 

Here the asterisk indicates a complex conjugate.  Since the original time series are real, 
we must have F(- ) = F*( ).  In the special case where f2(t) = f1(t) = f(t), we get, since 
f(t) is real and F( ) Hermitian 

 

f t( )
2
dt =

1
F( )

2

0

d

 

(6.31)  

Thus the square of the time series integrated over time is equal to the square (inner 
product) of the Fourier transform integrated over frequency.  This just shows that the 
integrated variance in time is equal to the power spectrum integrated over frequency.  I’ll 
argue later that we should plot the power spectrum so that the area under the curve 
represents variance. 
_____________________________________________________________________ 
 
Fourier Transform with Discrete Frequency and Time. 
 
In real applications we generally work with a finite sample of time with data given at 
discrete intervals of time, t, and represent the Fourier transform with a discrete set of 
frequencies determined to be harmonics of the chunk length of the FFT. 
 
 
Derivation of the Lag Correlation method of computing power spectra: 
 

The continuous form of the definition of the lag correlation function is, 

 

r( ) = f1 t( ) f1 t +( )dt

 

(6.32) 

We can use Parseval’s theorem to write, 

 

f1 t( ) f2 t( )dt =
1

2
F2( )F1

*( )d

 

(6.33) 

where 

 

f1,2 t( ) =
1

2
F1,2 ( )ei td

 

(6.34) 
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In addition we will need the time-shifting theorem, 

 

f t ± a( ) =
1

2
F( )ei t±a( )d =

1

2
F( )e±i aei td

 

(6.35) 

 
Now we may define 

 

f1 t +( )dt =
1

2
F2( )ei dt =

1

2
F1( )ei ei td

 

(6.36) 

Substituting this (6.36) back into the definition of the lag correlation(6.32) and using 
Parseval’s Theorem we obtain the result we want. 

 

r11( ) = f1 t( ) f1 t +( )dt =
1

2
F1( )F1

*( )ei d

r( ) =
1

2 11( )ei d  

(6.37) 

and conversely (since the above is just a Fourier Transform) 

 

11 ( ) = r11 ( )e i d

 

(6.38) 

Thus the auto correlation coefficient, r11( ), and the power spectrum, 11 ( ) form a 
Fourier transform pair. 
 

 We can apply these formulas to finite time and frequency ranges, and to the 
calculation of cospectra and quadrature spectra. 

 

r12( ) =
1

2 12( )ei d

12( ) = r12( )e i d  

(6.39) 

The cross power  12( ) is generally complex and can be divided into its real (cospectra) 
and imaginary (quadrature spectra) parts.  
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Example:  What is the power spectrum of Red Noise? 
 

The autocorrelation function for red noise is  

 
r( ) = exp

T
 
 
 

 
 
 
 

(6.40) 

So that the power spectrum 
 

 

( ) = exp
T

 

  
 

  
e i d

=
1

1
T

+ i
exp

1
T

+ i 

 
  

 
 

 
 
 

 
 
 

 

(6.40) 

This expression has an irreducible singularity at  = - .  Contour integration to evaluate 
the integral yields 

 

( ) =

2

T
1

T2
+ 2

=
2T

1 + 2T2
 

(6.41) 

This function, the power spectrum of red noise, has its largest value at   = 0 and falls off 
rapidly with increasing , for small  it falls off more rapidly with large T, as is 
illustrated in the following figure. 

 

( )

Large T

Small T
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Figure 6.8  Schematic of a red noise power spectrum with a large e-folding time for 
autocorrelation T, and one with a small e-folding time for autocorrelation. 
 
Example 2:  Power spectrum of white noise 
 
The autocorrelation of white noise is a delta function of the lag. 
                     r ( )  =  ( ) 

The power spectrum is therefore, 

 

( ) = ( )e i d

= 1  

(6.42) 

White noise has an equal amount of variance contained in all frequencies. 
 

( )

1

 
 Figure 6.9  Schematic of a white noise power spectrum with zero autocorrelation time. 
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Some Examples of lag correlation - Power spectrum pairs 
 
a) white noise  r ( )  =  ( ) 

( )

1

r( )

0
 

 

b) red noise    r = exp (- / ) 

( )

1

r( )

0
 

 

c) linear trend   r ( )  = 1                                          = ( ) 

( )

1

r( )

0
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d) pure periodicity 

( )

1

r( )

0

-1

=
0  

 
 
e) quasi-periodicity with trend or other low-frequency noise. 

( )

1

r( )

0

-1

=
0  

Fig. 6.10  Examples of autocorrelation function – power spectrum pairs. 
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6.2.4   Plotting Power Spectra 
 
 Two basic schemes are in common use for plotting power spectral densities as a 
function of frequency; the linear scale and the logarithmic scale.  These both have the 
property that the area under the curve is proportional to the total variance.  In many 
applications with large ranges of frequency and variance, you will see log scales on both 
the power and the frequency axes.  You have to be careful with these.  If you use a 
logarithmic power scale and a linear frequency scale, then the weak variances look more 
important than they are.  If you use a logarithmic frequency scale and linear power scale, 
then the high frequencies are much more important than they look.  If you use a log-log 
scale, then both illusions occur.  
 
Linear Scale: 

In the linear scale power spectral density is plotted against frequency and the total 
variance is then simply the area under the curve. 
 

( )

1 2
*

 
Fig. 6.11  Schematic of a continuous power versus frequency spectrum for which the 
power or variance between two frequencies is proportional to the integral under the 
curve.. 

variance = ( )

1

2

d  

Logarithmic scale:   

When the frequency range is very large we may wish to plot the power spectral 
density times the frequency versus the natural logarithm of the frequency.  In this case the 
area under the curve is again equal to the total variance, but the low frequency end of the 
spectrum has been stretched out and the high frequency end contracted.  This rescaling of 
the abscissa implies that the relative height of the power spectral density as it appears on 



ATM 552 Notes: Hartmann:   Time Series Analysis-Spectral  Section 6b     Page 145 

Copyright 2008   Dennis L. Hartmann 2/6/08   5:43 PM 145

the plot will also change.  This will tend to make small peaks in a generally red spectrum 
appear more significant, as the low frequencies are stretched over a larger horizontal 
extent in the graph. 

( )

ln  1 2
*ln  

ln  
ln  

 
Fig. 6.12  Schematic of a continuous frequency times power versus log of frequency 
spectrum for which the power or variance between two frequencies is proportional to the 
integral under the curve. 
 
In this case we see that the effect of the rescaling of the ordinate and abscissa are such 
that the area under the curve between two frequencies is still equal to the variance 
contained in that interval, so each representation is a proper representation of power 
spectral density. 
 

 

( )

1

2

d = ( )

ln 1

ln 2

d ln

 

(6.43) 

 
6.2.5  Data windows and Window Carpentry 

 In the analytic case we presume an infinite domain so that the true spectrum can be 
calculated exactly, provided the analytic function satisfies certain conditions: 

 F( )= f t( )e i dt ( )= F( )F*( )

 

(6.44) 

In real cases, however, where we cannot observe f(t) on the interval -  < t < , we are 
looking at the function through a “window.”  The window can be represented by a 
function w(t).  The window function for the ideal analytic case where we know the 
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function on the interval ( -  ,  ), and the more realistic case where we know the 
function only on the interval (0,T), are shown below. 
 
a.)  analytic case infinite data                              b.)  sample of length T 
 

0 0

w(t)

1

w(t)

T
t

 
Fig. 6.13  Schematic comparing the window function of an infinite time series, with that 

of a finite time series.. 

 

a)  Infinite Data:  In the case of infinite data, the window function is one for all t and we 
get an exact representation of f(t), 

 t( ) f t( )=1 f t( ) F( )

 

(6.45) 

and we get the true spectrum. 
 

b)  Finite Sample of Data:  In the case where we view the time series f(t) through a finite 
window, we do not get an exact measure of the spectrum, but something that is affected 
by the geometry of the window we are looking through.  

 F( ) = f t( )w t( )e i tdt

= f t( )
t
T
 

 

 

 
e i tdt

 

(6.46) 

where  x( ) =
1 0 x 1

0 elsewhere

 
 
 

  

by the convolution theorem 
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 f1 t( ) f2 t( )e i tdt =
1

2
F1  ( )F2  ( )d  

 

(6.47) 

Recall the formula for a continuous Fourier Transform, 

 f1 t( )e i tdt= F( )

 

(6.45) 

with the window included we get  

 F? ( )=
1

2
F ( )

sin ( )
T

2

( )
T

2

d F ( )  (6.46) 

where we have used the known Fourier transform pair for the Boxcar function, which we 
will call the sinch function. 

 t( )
sin
2

2

 (6.47) 

In this case we do not obtain the true spectrum F( ) but a convolution of the true 
spectrum with a weighting window 

 W ( )=
2

( )sin( )
T

2
 (6.48) 

 
 This acts as a smoothing on the true spectrum.  The degree of smoothing depends 
on the length of the data window T.  The shorter that T is, the stronger the 
smoothing/spread will be.  In addition to the smoothing effect, the side lobes of the 
frequency window lead to spectral leakage.  Therefore we can see that we must carefully 
design the window through which we view the data prior to spectral analysis, if we want 
to obtain the best results.  The response function for the rectangular window is shown 
below.  Note that while the response does peak strongly at the central frequency, 
significant negative side lobes are present.  This means that our spectral analysis will 
introduce spurious oscillations at higher and lower frequencies that are out of phase with 
the actual oscillation.   
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Fig. 6.14  The sinch function plotted on the Nyquist interval -0.5 < f < 0.5 cycles per time 
step.  Notice how the bandwidth and spread of the response function is narrowed 
as the total length of the Fourier Transform, T, is made longer.  Notice the large 
negative side lobes and their rather slow decay. 

 

It is very important to understand the implications of Fig. 6.14. 
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w(t)

w(t)

W( )

W( )

Square Window

Tapered Window

 
 

Fig. 6.15  Schematic of square window w(t) and spectral response W( ) and tapered 
window and its spectral response. 

 
   In general, the ideal window response function, W( ),  would have a narrow central 
lobe and insignificant side lobes.  We can improve on the naive rectangular window 
function and the rather unsatisfactory sinch function window response through 
modifications of the window function w(t). 
 

0

W( 0)

( 0)

"Ideal" window response

  

Fig. 6.16  The ideal window response is a narrow peak with a value of 1.0, and no side 
lobes. 
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The influence of the length of the record, T, on the spectra can be seen in the window 
response function for a rectangular window.  The choice of the proper T for the problem 

in question is affected by several considerations. 
 
 1.  Large T     better resolution in frequency 
 2.  Small T     better stability if we use many realizations:  Bandwidth 1/T 
 3.  Choose T to encompass some event -  seismology 
                                                    -  intermittency in turbulence 
 
The particular choice made depends on the nature of the phenomena of interest and the 
frequency resolution required.  Often our options are limited by the availability of data. 
 
Window Carpentry: 
 
The characteristics that we want of frequency window are: 

1.  A high concentration in the central lobe; requires a large T. 

2.  Small or insignificant side lobes; requires a smooth time window without sharp 
corners. 

A rectangular or Boxcar window leaves the time series undistorted, but can 
seriously distort the frequency spectrum.   A tapered window distorts the time series but 
may yield a more representative frequency spectrum. 

0

1

w(t)

t
T/2-T/2

Bartlett Window

  

0

1

w(t)

t
T/2-T/2

TaperedWindow

 

Fig. 6.17  A rectangular or Boxcar window is rectangular, a tapered window has 
rounded edges. 

 

Boxcar Window 
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Some windows (commonly used): 
 
Boxcar  (square or rectangular);  also what you use if you are naive and don’t apply an 
explicit window function. 

 W t( ) =
1 0 t T

0 t > T
 (6.49) 

 
has the Fourier Transform that  is the sinch function,  
 

 W ( ) =

2sin
T

2
 

 

 

 

T

2

=2sinc
T
2

 

 

 

 
 (6.50) 

  

The rectangular window is a commonly used window; indeed this is the window 
people use when they ignore the fact that they are using a window, or when they are 
ignorant of it.  The rectangular window has a serious side-lobe problem.  Frequencies that 
are outside the range of frequencies actually resolved can have too strong an influence on 
the power spectra at the frequencies resolved.  This is another form of aliasing. 
 
 
Hanning:  (Cosine Bell; Tukey Window) 

w t( )=

1

2
1 cos

2 t

T
; 0 t T

0 ; t > T or t < 0

=
2

T
cos2

t

T
; 0 t T

 (6.51) 

The cosine bell window is perhaps the most frequently used window in meteorological 
applications.  It is automatically applied in the Matlab routine “spectrum” or 
“spectrum.welch”. 

 

  

W ( ) = sinc
T 

 

 

 

Same as
Bartlett

       

+
1
2
sinc

T
+1

 

 

 

 
+ sinc

T
1

 

 

 

 

 

 
 

 

 
 

CANCELS1st TWOSIDELOBES
                   

 (6.52) 

We can see that the first part of the response function for the cosine bell window is a 
sinch function exactly like that of the rectangular window.  In addition, however, we have 
two additional sinch functions of reduced amplitude that maximize one unit on either side 
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of the central lobe.  The effect of these is to partially cancel the negative side lobes of the 
rectangular response function and to slightly broaden the central lobe.  We like the fact 
that the side lobes are now smaller, but the broadened central lobe means that the 
spectrum will be slightly smoothed compared to a rectangular window.  This smoothing 
is not a disaster in most applications, since we often end up doing some smoothing 
anyway, and the smoothing effect of the cosine bell window allows us to claim a small 
increase in the number of degrees of freedom per spectral estimate. 
 

Hamming:  Slight modification of Hanning 

 t( ) = 0.54 + 0.46cos
t

T

0 t T

0 t > T

 (6.53) 

 W ( ) =1.08sinc
T

+0.46 sinc
T

+1
 

 

 

 
+ sinc

T
1

 

 

 

 

 

 
 

 

 
  (6.54) 

The Hamming window provides a slightly more optimal reduction in the side 
lobes and slightly more smoothing of the central lobe. 
 
 
Parzen:  Power window 

 w t( ) = 1
t m

T
0 t T

0 t > T

 (6.55) 

Special (common) form 

 w t( ) =

1 6
t

T

2

+ 6
t

T

3

0 t
T

2

2 1
t

T

3
T

2
t T

0 t > T

 (6.56) 

The response function for the common Parzen window is proportional to the fourth 
power of the central frequency divided by the frequency.  Thus there are no negative side 
lobes.  The response function is rather broad. 
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 W t( ) =
P sin 

 
 
 

4
 (6.57) 

Using the Fast Fourier Transform Method:  WOSA 

 One of the most common methods of spectral analysis used is the Fast Fourier 
Transform method.  In this method a direct Fourier Transform is made of the data using 
an efficient algorithm that makes use of the fact that the length of the time series has been 
chosen to be an integer power of two Mch=2n.  Mixed radix FFT’s are also available for 

which Mch =2n 3m 5j.  In applying these methods the total time series of length N t is 
broken up into a series of smaller chunks of length Mch.  The spectra and cross-spectra 
for these smaller chunks can be averaged into a grand spectrum that has some degree of 
statistical reliability.  This is called Welch’s Overlapping Segment Analysis, or WOSA.  
Because a tapered window is normally applied, the data near the ends of the chunks of 
length Mch are not weighted as heavily as the data in the center of the chunks.  So that all 
the data are weighted equally, it is desirable to have the chunks overlap somewhat.  In the 
Matlab spectral analysis routines, this is handled by the ‘noverlap’ parameter.  If you 
overlap the windows by exactly one half of the chunk length, and you are using the 
Hanning window, then each data point gets exactly the same weight in the resulting 
averaged spectrum, except the first and last Mch/2 points in the total data set. 

 

6.2.6  Statistical Significance of Spectral Peaks 

The statistical significance of peaks in a power spectrum are assessed as in any 
case by stating the significance level desired, and then stating the null hypothesis and its 
alternative.  The null hypothesis is usually that the time series is not periodic in the region 
of interest, but simply noise.  We thus compare amplitude of a spectral peak to a 
background value determined by a red noise fit to the spectrum, or at least this is one way 
to do it. 
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( )

o

1

o is the "background" spectrum,
which forms the null hypothesis

 
Figure. 6.18  Schematic of a spectrum, its null hypothesis spectrum and the ratio of the 
variances at a frequency of interest. 
 
One way to evaluate the significance of a spectral peak is to compute the ratio  /   and 
compare this value with a “Chi-Squared” test with the corresponding number of degrees 
of freedom 

 2
=
n 1( )s2

2 ; v=n 1 (6.58) 

Number of degrees of freedom, n 

 n =
N

Msp
• f  (6.59) 

 
 N   =  total sample size 
 Msp     =  number of spectral estimates 

 f   =  factor to compensate for smoothing done by the window. 

N.B.  The factor f    is generally between 1 and 1.5, depending on how much smoothing 
that the window does.  We will set it equal to 1 in our work here, which is conservative. 
For the Hanning Window,  f   is equal to 1.2. 
 
A more convenient way to apply this test is to use the F-test, based on the F distribution. 

Theorem:  If s1
2  and s2

2  are the variances of independent random samples of size n1, and 
n2, respectively, taken from two normal populations having the same variance, then 
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 F =
s1
2

s2
2  (6.60) 

is a value of a random variable having the F distribution with the parameters v1 = n1-1 

and 2 = n2-1.   
 
 The F distribution can be used to determine whether two sample variances are 
different in a statistical sense.  Tables of the F distribution are included on page 16.  You 
should not confuse this F with F(z), the cumulative distribution of the Normal 
distribution. 

In assigning a confidence level and interpreting statistical tests of significance one 
must be concerned very much with the distinction between a priori  and a posteriori 
statistics. 

a priori 

If we have stated in advance that we expect a peak at a particular frequency (and 
given a good reason beforehand), then we can simply test the significance of the spectral 
peak above the background using the normal confidence limits set forth for the chi-
squared or F statistics. 

a posteriori 

If we have not stated at which frequency we expect the peak, then we must 
determine the probability that one frequency out of the Msp we have computed should 
show a significant peak.  The usual way to do this would be to take the probability of a 
type II error (accepting a false hypothesis as true) and multiply this by the number of 
chances we have given the spectrum to exceed the required level. 

 

Example:  Suppose we have a spectral peak which exceeds the background significantly 
at the 99.9% probability level. 

1.  If we had predicted this frequency, then we can use the 99.9% probability level and 
infer that only a  0.1% possibility exists that this spectral peak could have occurred by 
chance.  We have an a priori  reason for expecting this peak and we can therefore use 
a priori  statistics. 

2.  If we had not predicted the frequency of the peak, then we must test the probability 
that one frequency out of our sample of Msp/f  independent estimates should show a 

significant peak. Msp is the number of frequencies retained in our spectrum and f  is 

the factor indicating the degree of smoothing by the window.  If Msp /f  = 50 then our 
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chance of getting a spectrum with no significant peaks is (0.999)50 = 0.95 and we have 
only 95% confidence that this peak at this frequency is significant.  If we had started 
with a 95% confidence limit the significance would be (0.95)50 = 7.7%.  It is almost 
guaranteed that at least one frequency would show a 95% peak.  See Madden and 
Julian, 1971, J. Atmos. Sci., p. 702 for a discussion of a priori  and a posteriori  
confidence limits. 

 
 
Examples: 

1.  Suppose we have 100 days of 4-times-daily observations.  We have good 
reason to expect a peak in the 4-6 day period range.  What value of Msp should we shoot 
for and what does this mean about the chunk length we should use? 

If we want to distinguish a peak in the 4-6 day range from adjacent frequencies, then we 
may use the following calculation. 

 

To distinguish 4-day and 6-day periods, we need a bandwidth,  f , that is about 0.1 
cycles per day.  To get this bandwidth we need a chunk length that is about 10 days long, 
since the bandwidth is one over the chunk length (the chunk length Mch  is the time 
interval to which the FFT is applied.)  This gives us rather minimal frequency resolution 
between the zero frequency and the frequency of interest, plus there will be some 
smoothing of the spectrum, so let’s choose a chunk length of 20 days.  This is 80 time 
points, since we have 4 observations per day.  If we want the chunk to be a power of two 
we must choose 64 or 128, or chunks of 16 or 32 days.   

If we choose 32we will only have 6 or 8degrees of freedom per spectral estimate, so let’s 
choose 16-day chunks, consisting of 64 4xdaily observations from which we will obtain 
32 spectral estimates (Msp=Mch /2).  Our degrees of freedom will be about 400/32 = 12.5, 
forgetting for the moment about the factor associated with the smoothing due to the 
window. 

f =
1

Mch t
=
1

T
 , where T is the total time in the chunk. 

d.o. f N /Msp ,  where N is the total number of data points and Msp  is the number of 

spectral estimates.  We could multiply this by f  = 1.2 to take into account the 

4 6 day periods  0.25 -  0.15 cycles per day  f ~  0.1 cpd

fi  =  0, 0.1,  0.2,  0.3

                       

                     this one
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spectral smoothing by the Hanning window if we get in a pinch, and we have used 
the Hanning window. 

The frequencies resolved go from 1/T to 2/ t, as n/T,  n=0,1, 2, 3, . . Msp .  Half 

of these frequencies are greater than 4/ t, which is our case is 1 cycle per day.  Thus, 
more than half of the frequencies we are resolving are higher than our level of interest. It 
would have been better to start with daily observations.  In general one should sample 
only frequently enough to resolve the wave of interest, which requires only 4-6 points.  
So in our case daily data are adequate.  Fig. 6.19 shows power spectra with red noise plus 
a periodicity at 4 days period, frequency 0.25 cycles per day, computed with 4xdaily and 
daily data.  It is not necessary to use data taken more frequently than once a day. 

  

Figure 6.19  Left: Example of power spectrum in which the sampling rate is 4xdaily, so 
that the Nyquist frequency is two cycles per day.  Note that half of the frequencies 
computed are between 1 cycle per day and 2 cycles per day.  If the interest is around 0.25 
cycles per day (period of 4 days), then many frequencies are being calculated for 
nothing.  Right: If daily data were used the Nyquist period would be 0.5 cycles per day, 
and the period of interest appears near the center of the Nyquist interval. 

When we sample more frequently than necessary to resolve the frequencies of 
interest, a lot of effort and information goes into frequencies that we aren’t interested in 
(Fig. 6.19), plus the problems with a priori versus a posteriori confidence are worsened.. 

What if we had not pre-specified the desired frequency?    

A posteriori possibility of type II error.  OK, if we have not guessed the 
frequency, we have given the spectrum many chances to pass the significance level.  The 
number of independent frequencies is the number of frequencies computed, divided b the 
smoothing factor.  The number of frequencies in Fourier spectral analysis, Msp, is half the 
blocklength Mch.   
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a.) 4  daily:  number of independent frequencies, and hence the number of 
chances we have given the spectrum to exceed our statistical criterion is  

 
Msp

f
=
32

f
 

b.) 1  daily 

 
Msp

f
=
8

f
 

 
smaller multiplication of probability to type II error. 
 

a )  0.01error >= (0.99)

32

f 72%  confidence 
 

b) 0.01error >= (0.99)

8

f 92% confidence 

  

Here it is plain to see that by including unnecessary resolution in the input data we have 
exaggerated the difference between a priori and a posteriori confidence estimates.  It is a 
good idea to not use more frequent sampling than is needed to measure the phenomena of 
interest. 
 
Example:  Suppose we wish to examine climatic fluctuations in the 10-1000 year range.  
How long a time series is required and what should be the spacing of the data values? 
 
If we want a minimum number of about 10 degrees of freedom before we take into 
account the window, then we should have a data record which is at least 10 times as long 
as the lowest frequency we wish to resolve (i.e., 10 realizations of the signal). 
 
Then T = 10  1000 years = 10,000 years 
 
In order to resolve a sinusoid of 10 years duration we need at least 4 data points per cycle 
so t = 1 or 2 years.  2 is adequate, 1 is plenty. 
 
One might wish to analyze the time series separately for the long and short period ends of 
this long time series. 
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a.)  High frequency analysis = periods < 50 years 

2Msp = 200dayblocks

f =
1

200
= 0.005cpy

fi =
i

200yr
= 0,0.005,0.01,0.015,0.02,...0.5cpy

periods= ,200,100,67,50,....2years

 

 d.o.f. = 
N

Msp
f =

10000

100
f = 100 f d.o.f. great( )  

If we are using a power of 2 FFT, then we would choose a blocklength of Mch=256 and 
we would get at least 10,000/128 = 78 degrees of freedom (still great). 

b.  Low frequency analysis 

2Msp = 2000dayblocks

f =
1

2000
= 0.0005cpy

fi =
i

2000yr
= 0,0.0005,0.001,0.0015,0.002,...0.5cpy

periods= ,2000,1000,670,500,....2years

 

If we are using a power of 2 FFT, then we would choose a block length of Mch =2048 
and we would get at least 10,000/1024 = 9.8 degrees of freedom (not good).  Also, the 
frequency of interest is very close to the low end.  We should really choose the block 
length of 4000 years. 

 

6.2.7  Experimental Red Noise Spectra 

Gilman et al. (1963) have provided a formula for calculating the shape of 
experimental red noise spectra to be used in constructing null hypotheses for significance 
testing.  Using the lag correlation function for a first-order linear Markov process, 

 r k t( ) = k ; where r t( ) =  (6.61) 

 is the one-lag autocorrelation, or the autocorrelation between time points separated by 
one unit of time, t.  Using the finite Fourier transform of this lag correlation function 
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expressed with a maximum number of lags, Msp, they present an approximate shape 
function for the spectrum associated with this autocorrelation function. 

 P h, ,Msp( ) =
1 2

1 2 cos
h

Msp
+

2

 (6.62) 

In (6.62) h represents the frequency, but is given in peculiar units.  It varies from 
zero to Msp, corresponding to the Msp +1 frequencies provided by the Fourier transform 
of a lag-correlation function with a maximum lag of Msp or an FFT based on a block 
length of 2Msp = Mch. To fit the shape function (6.62) to a real spectrum we would 

normally obtain the parameter  from the original time series as the average of the one-
lag autocorrelation and the square root of the two-lag autocorrelation.  We then multiply 
the shape for that value of  and the value of Msp by a factor that will make the variance 
equal to that of the time series in question.  One simple way to do this is to match the 
total variance.  The total variance is the sum over all non-zero frequencies.  So sum the 
power in the observed spectrum and the power in the idealized red noise spectrum.  Then 
multiply the idealized red noise spectrum by this ratio, so that the red noise spectrum has 
the same total variance as the observed spectrum.. 
 

In section 6.2.3 we derived the power spectrum for red noise using continuous, 
infinite lag-correlation functions and time series.  The functional form obtained is not 
identical to the discrete, finite form (6.62).  The continuous red noise spectrum is, 

 ( ) =
2T

1+ 2T2
 (6.63) 

We can translate this into an analogy with (6.62) by converting from e-folding 
time, T, to , and from frequency  to frequency index h.  First note the relationship 
between T and . 

 T =
t

ln( )
 (6.64) 

Substituting (6.64) into (6.63), we obtain, 

 ( ) =
2 t ln( )

ln( )
2
+

2 t2
 (6.65) 

 

Given in units of the parameter h, the frequency is, 
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 =
2 h

2Msp t
=

h

Msp t
 (6.66) 

So that (6.65) becomes, 

 ( ) =
2 t ln( )

ln( )2 +
h

Msp

2
 (6.67) 

Now we must remember that the theoretical spectrum applies to a hypothetical 
infinite data set that would allow all possible lags and all possible frequencies to be 
represented, whereas the sample red–noise spectrum is derived for a sample of finite 
length.  This also means that the norms for the two spectra cannot be the same, since 
(6.63) is meant to be integrated over all frequencies 0  , while (6.62) is integrated 
only over a finite range of frequencies.  If we integrate (6.63) over the interval from -  to 

 we get a norm of 2 .  If we integrate (6.67) over the range of 0 to / t, we get a norm 
of, 

 Norm = 2 tan 1

ln

 

 
 

 

 
  (6.68) 

which makes (6.67) take the form, 

 '( ) =
t ln( )

tan 1

ln

1

ln( )2 +
h

Msp

2  (6.69) 

(6.62) is normalized such that all frequencies have unit variance if the spectrum is 
white.  Equation (6.69) is normalized such that the integral under the curve is unity.  To 
bring the two normalizations together we can multiply (6.69) by the total range of 
frequency, which is the Nyquist frequency, / t.  Multiplying (6.69) by this factor will 
make all the frequencies have unit spectrum when =0, in agreement with the 
normalization of (6.62).  The final result we get for a properly normalized theoretical 
spectrum is, 
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 '( ) =
ln( )

tan 1

ln

1

ln( )2 +
h

Msp

2  (6.70) 

In the following figure we plot the red noise spectra according to (6.62) and (6.70) 
for one-lag autocorrelations of 0.1, 0.5, and 0.7.  The unit of frequency is radians per time 
step.  You will note that the theoretical value is a little more steep than that of Gilman et 
al. (1963).  This is probably associated with the smoothing and aliasing produced by the 
finite window size used to estimate the spectra.  In practice, you should always use 
(6.62), since that is what you expect to see through a finite window, but it is interesting to 
know that the experimental value and the theoretical value are not too different. 
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Fig. 6.20  Theoretical red noise spectra for various one-lag autocorrelations, using the 
theoretical red noise spectrum and the one derived by Gilman et al for a finite window. 

 
Hard Lessons with Small Samples: 

Suppose we take a hypothetical red noise time series constructed from a first-
order linear Markov process. 

 xt = a xt t + 1 a2( )
1/2

t( )  (6.71) 

Here (t) is a standardized white noise process. 
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If we take one sample of such a time series, say 256 daily values, and compute a 

spectrum, we can get a variety of things (See Fig. 6.21).  Only after averaging over many 
such realizations will we begin to converge on the red noise spectra described above.  To 
demonstrate this we show several examples of spectra obtained from 256 day segments 
of the time series (6.16), calculated with a = 0.5.  In the first example (Fig. 6.21a) there 
appears to be a dominant frequency around 0.04 cpd, or a period of 25 days.  In the next 
example (Fig. 6.12b) spikes appear in the spectrum again, but at different frequencies.  
After averaging together 10 such spectra (Fig. 6.21e), the averaged spectrum still shows 
considerable spikiness.  Even with 40 realizations (about 80 degrees of freedom) the 
spectrum is jagged.  The sampling uncertainty is only reduced as the square root of the 
sample size. 
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Fig. 6.21: a) and b) are two single realizations of spectra based on 256 times steps 
drawn from a red noise process with a one-lag autocorrelation of 0.5.  c) is another 
single realization,  d) is the average of c) and another independent realization.  e) and f) 
are averages over 10 and 40 independent realizations, respectively.  Notice the enormous 
peak in c) that persists into d), but then disappears after more realizations are added.  
Huge peaks can appear by chance in short records of data that are in reality only 
autocorrelated noise.  The smooth solid curve is the Gilman et al estimate of the true 
spectrum of red noise observed through a Rectangular window.  The dashed curve is the 
99% confidence level needed to reject a null hypothesis of red noise on an a priori basis. 


