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5.  Objective Analysis of Observations onto a Regular Grid 

In dynamical meteorology, oceanography, and numerical prediction one is often 
presented with the following problem.  Data are available at a number of observation 
points (usually located near cities or at field stations, along ship cruise tracks, at 
moorings, or perhaps located by the observation points of an orbiting satellite) that are 
unevenly distributed over the domain of interest (the globe, for example).  In order to 
compute derivatives of the field variables, as would be required in diagnostic studies or in 
the initialization of a numerical model,  or simply to perform a sensible averaging 
process, one often requires values of the variables at points on a regular grid.  Assigning 
the best values at the grid points, given data at arbitrarily located stations and perhaps a 
first guess at regular grid points, is what has traditionally been called objective analysis 
when done on a computer rather than graphically by hand. 
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We will use the example of making weather maps from rawinsonde data as the 
particular example of the mapping problem here.  In fact the methods described are 
applicable to any problem where the data you are given do not fill the domain of interest 
fully, and/or where the data must be interpolated to  a regular grid.  The regridding can be 
in space, in time, or both.  You may also find yourself in the position of wanting to plot a 
continuous function of an observation in two parameter dimensions, and have samples at 
only a few points.  We will proceed through some of the methods in the order that they 
arose in the history of numerical weather forecasting.  In this way we show the 
weaknesses of some of the most obvious methods such as function fitting, to the 
correction method, and ultimately to statistically optimized correction methods such as 
optimum interpolation.  Current assimilation schemes in numerical forecast models us a 
combination of optimum interpolation and use of the governing equations of the model, 
which we can call Kalman filtering, which is discussed in elementary terms  in Chapter 8. 
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5.1  Polynomial Fitting Methods 

Panofsky (1949) suggested a method in which data at station points are used to 
define the coefficients of a polynomial fit, which is then used to estimate the values of the 
variables at the grid points.  The general form chosen could be, 

 x, y( ) = a0 +a1x+a2x
2
+b2y

2
+2c2xy+ ....  (5.1) 

Polynomial fits are unstable in the sense that the values the polynomials give at 
points between the stations vary greatly for small changes in the data at the station points, 
and especially so when data are missing.  The problem gets worse as the order of the 
polynomial is increased.  The method is nearly useless where the data are sparse.  The 
instability of the polynomial fit is such that when one key data point is removed, the 
polynomial fit in that region may change radically.   

Gilchrist and Cressman (1954) suggested a multiple regression to a second-order 
polynomial, but applied to each individual grid point.  A sufficient number of stations in 
the vicinity of a grid point could be used to determine the parameters of the fit that is 
appropriate for that grid point.  A different set of stations could be used for other fits in 
the neighborhood of other grid points.  If you begin with a form like, 

 
˜  x, y( ) = akx

k y

k=1

6

 (5.2) 

then wind data can also be included in the estimate of geopotential by using (5.2) and the 
geostrophic relationship to write, 

 
˜ U =
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 (5.3) 

 

 
˜ V =

1

f0
ak k y k x 1

k

 (5.4) 

A composite error function can be defined, that can be minimized to define the 
coefficients, ak. 
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Here the subscript i refers to the stations where we have data.  Of course we must 
have a minimum of 6 observations to define 6 coefficients.  2 is a weight factor to 
determine how closely to fit to the wind data relative to the height data.  This method is 
relatively expensive and does poorly in regions of sparse data, where we need an 
objective analysis scheme the most.  In this respect it is similar to other polynomial 
schemes. 

The problem with polynomial fits in regions of sparse data is illustrated in the 
accompanying figure.  Shown at the top is the fit of a cubic to five data points.  At the 
bottom we remove one of the data points and do the fit again.  Note how wildly the two 
curves depart from each other in the vicinity of the missing point.  Such problems can be 
avoided by not using polynomial fits, and by utilizing a first guess that retains the 
information gained from prior observations.  Then one missing datum in the middle of 
the Pacific will not have such an unfortunate effect on the analysis. 
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Figure 5.1 .  Example of fifth order polynomial fit to data.  When data point at x=2 is 
added (curve B), the fitted curve deviates not only locally at x=2, but also at 
5<x<7, where no new data were added. 

A polynomial fit that actually got adopted by the US National Meteorological 
Center for its routine operational products was proposed by Flattery (1971).  In this 
scheme Hough functions were used as the interpolating polynomials.  These functions are 
an orthogonal set that are the solutions of the linearized equations for a resting 
atmosphere (the tidal equations).  The idea was that if you expressed the data in terms of 
actual solutions of the dynamical equations, then your fit between the data points would 
have some dynamical consistency.  The Hough functions are global functions and so all 
of the observations were used simultaneously to define the global Hough function 
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coefficients and produce a global map.  Only the Hough functions describing slowly 
varying rotational modes were used.  The gravity wave modes were zeroed out to 
produce a well-initialized field.  This method replaced Cressman’s correction method for 
global analyses in about 1972 and was replaced by Optimum Interpolation in 1978.  This 
method has some dynamical and mathematical appeal, but is in truth just a glorified 
polynomial fit and has all of the problems of polynomial fits.  First of all, the atmosphere 
is highly nonlinear and strongly forced by heating, especially in the tropics.  The Hough 
modes chosen were primarily the free, non-divergent Rossby modes, which constitute a 
large, but not dominant, fraction of the variance.  Therefore this aspect of the Flattery 
method did not buy much.  In the tropics, where highly divergent motions forced by 
heating are important, the analyses constructed with the Flattery method are very much in 
error, especially in their estimates of divergence, which they set to essentially zero.  In 
addition the Hough function fits are wildly unstable in regions of sparse data, like any 
polynomial fit.  The NMC tropical analyses produced before 1978 are almost totally 
useless because they were made with the Flattery analysis system.  Normal mode fits are 
still used in numerical initialization schemes to remove fast gravity waves, but this does 
not really affect the slowly changing meteorological flow. 

5.2  The Correction Method 

The correction method (Berthorsson and Doos, 1955; Cressman, 1959), begins 
with a first guess and modifies it appropriately to take into account new data.  Starting 
with a reasonable first guess and only modifying it when and where data are available can 
avoid the wildness and instability of the polynomial methods.  Also, if the new data 
departs too wildly from the first guess, one suspects that the data are faulty and can 
devise objective methods to reject it.  The method proceeds by scanning and correcting 
the field several times and applying some smoothing between correction steps.   

Suppose we consider first only the height field.  Define the following variables 
and symbols: 

zf   =  the first guess at a grid point 

zoi  =  an observation at station i 

zfi  =  the first guess interpolated to the position of station i 

The error in the first guess at the station i is then 

Eh  =  zfi – zoi 

The correction required at the grid point is then defined to be 

Ch  =  – W Eh 
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Where W is a weighting factor that depends on the distance from the station to the grid 
point where we are correcting our analysis. 

W =
D2 d2

D2 + d2
 

 

Where d is the distance from the grid point to the station and D is the distance at which  
W  0.  D is the influence radius. 
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Fig. 5.2  A circular influence function as used in the Cressman scheme. 

If both a wind and a height are reported at the station then we can use the 
geostrophic relationship to extrapolate the observed height to the grid point. 
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 (5.6) 

The first three terms inside the square brackets in (5.6) are the observed height at 
the station i extrapolated to the grid point.  If we subtract the first guess at the grid point, 
zf, then we have minus the error at the grid point, which if added to the first guess should 
give an improved estimate of the true height at the grid point.  The horizontal derivatives 
of the height field at the station point can be estimated from the observed winds using the 
geostrophic relation. 
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The resulting form of the correction using the winds is then, 

 Cv = W z0i +
kf
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vi x ui y( ) z f

 

 
 

 

 
  (5.8) 
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Where m is a map factor and k = ug/u = 1.08, on average. 

In Cressman’s scheme both Ch and Cv are used.  Moreover, all station data within 
a distance D of the gridpoint are used.  The actual correction used is a weighted mean of 
all the Ch and Cv within a distance D of the gridpoint. 

 C =

A Ch
i=1

Nh

+ Cv
i=1

Nv

ANh + Nv
 (5.9) 

Here Nh and Nv are the total number of height-based and wind-based corrections, 
respectively.  A is the weighting of height corrections relative to those based on 
horizontal gradients.  Typically A is about 0.25. 

One can scan the domain successively, using the previous estimate as the first 
guess for the new analysis.  One would start with a rather large D to make small 
corrections in the large gaps between stations and then reduce the value of D so that more 
spatial resolution could be retained in those regions with densely spaced stations.  Each 
scan and correction of the field is best followed by a smoothing operation to remove any 
kinks that have been introduced by the correction scheme.  This method is slow, but 
relatively successful.  It was used by NMC prior to the introduction of the Flattery 
analysis scheme in 1972, and was called Cressman’s scheme. 
 

5.3  Optimum Interpolation 

‘The interpolation which is linear relative to the initial data and whose root-mean-
square error is minimum is called the “optimum” interpolation’ (Wiener, 1949).  The 
difference between optimum interpolation and linear regression is that the coefficients are 
not determined anew each time.  Gandin (1963) first applied this method most forcefully 
to the mapping of meteorological data. 

Suppose we consider deviations from some “normal” state.  This could be 
climatology or a first guess, depending upon the application. 

   = norm; norm =   or a first guess. (5.10) 

Then we try to approximate the value of  at a grid point, g, in terms of a linear 
combination of the values of  at neighboring station points, i. 

 g ' = pi i' ; g' =
i=1

N

 grid value; i'  = station values. (5.11) 
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The coefficients pi are to be determined by minimizing the mean squared error. 

 E = g' pi i'
i=1

N 

 

  

 

 

  

2

 (5.12) 

We can write the normalized error as, 

 
E

g'
2
= 1 2 pirgi

i=1

N

+ pi pjrij
j=1

N

i=1

N

 (5.13) 

 where; rgi =
g ' i'

g'
2
; rij =

i ' j'

g'
2

 (5.14) 

Differentiation with respect to the coefficients leads to the condition of 
minimization used to determine them. 

 pi
= 2 rgi +2 pjrij

j=1

N

= 0 i=1,2, ..., N  (5.15) 

Equation (5.15) constitutes a system of N linear equations for the N p’s.  By substituting 
the conditions (5.15) into the expression (5.13) for the error, it can be shown that the 
error obtained after fitting the coefficients is, 

 = 1 rgi pi
i=1

N

 (5.16) 

Note:  In this simple example, if one of the observation points, k, coincides with a 
grid point, then rgk = 1, and we expect the regression procedure to return pk = 1 and all 
the other weights zero.  In this case the error is zero,  = 0, since we have assumed the 
data are perfect.  If the station points are uncorrelated with the grid point in question, then 
pi = 0 and  = 1, the climatic norm.  That is, the error will equal the standard deviation, 
but no worse. 

Observational Error: 

In what we have done so far the observations have been assumed to be perfect.  
Let us now consider what happens if we explicitly take account of the fact that our 
observations will always contain some error, i. 

 i' = ia '+ i  (5.17) 

Let’s assume, as is usually reasonable, that the error is uncorrelated with the true value, 
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ia' i = 0  

and that the errors at the various stations where we have data are uncorrelated, 

i j =

2 i = j

0 i j

 

 
 

  
 

In this case, rather than (5.13), we obtain, 

 = 1 2 bgipi
i

+ bij pi pj
ji

+ pi
2

i

 (5.18) 

 

where 
bij = rij = the correlation between the two points 

 

and where  is the ratio of the error variance (noise) to the measurement variance–in 
other words, the noise-to-signal ratio. 

 =

2

g'
2

 (5.19) 

Minimization of the error leads to the condition, 

 rijpj
j

+ pi = rgi i =1,2, 3,..., N  (5.20) 

In this case the normalized error is 

 = 1 pipjrij
ji

pi
2

i

 (5.21) 

What was the effect of including noise in the measurements? 

In order to see how optimum interpolation treats the a priori information that the 
observations include some error, or noise, it is instructive to compare the results (5.20) 
and (5.21) with the results (5.14) and (5.15) obtained assuming perfect data.  In the case 
of perfect data (5.15) gave, 

 rij pj = rgi, or pj = rij
1rgi  (5.22) 

When noise is included we get, rather, the result (5.20), which can be written, 
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 rij + Iij{ }pj = rgi or pj = rij + Iij{ }
1
rgi  (5.23) 

Where Iij is the unit matrix.  Looking at the right-hand member of the pair of 
equations (5.23), it is easy to see that the coefficients pj will be smaller when the error is 

large.  This is most obvious if we assume that rij is diagonal.  Thus we see that the 

inclusion of error makes the coefficients in (5.11) smaller and that therefore, by (5.10), 
the estimate we make will be closer to climatology.  If we include error, then OI will 
draw more closely to climatology or the first guess and tend to weight new observations 
less heavily.  This is desirable.  By putting different values of j along the diagonal, one 
can put information on the confidence one has in individual stations into the analysis 
scheme and weight more heavily those stations in which one has more confidence. 

What do we need to make OI work? 

In order to make the above schemes work, we need the correlation matrices rij and 
rgi.  The first of these is easily calculable from observations, but the second is not since it 
involves correlations between the station points and the grid points.  We do not have data 
at the grid points, or we wouldn’t need an analysis scheme.  In practice, not even the rij 
are calculated in full generality.  It is typical to assume that correlations between points 
depend only on the distance between them and not on location or direction (although it 
would be possible to include directionally dependent (anisotropic) correlations).  In this 
case the single isotropic correlation function can be estimated from station data.  This is a 
crude approximation since correlations between stations depend on the location of the 
stations and whether longitude or latitude separates them.  Some examples illustrating the 
anisotropy of correlation functions are shown on the following pages (Figs 5.3 and 5.4).  
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Fig. 5.3 .  Example of anisotropy of geopotential correlation using 500 mb winter data 
versus between-station distance.  a)  Height-height correlations for East-West orientation,  
b)  North-South orientation,  c)  Full array of correlations with top curve fitted to North-
South variations and bottom curve fitted to East-West correlations, middle curve to whole 
array of correlations.  D) average correlations values for 50 successive distance intervals 
of 62.5km.  After H.J.Thiebeaux. 
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Figure 5.4.  Anisotroic correlation contours, relative to Topeka, Kansas, reated by the 
two-dimensional autoregressive correlation model.  Solid line ellipses are contours on 
which the 500mb geopotential correlations with Topeka have magnitude 0.35.  Dashed 
line ellise and +’s are loci of correlation magnitude 0.54.  After H.J. Thiebeaux. 
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5.4  Practical Optimal Interpolation of Meteorological Data 
 

Suppose we wish to produce an optimal map of wind and geopotential on a 
pressure surface defined on a regular grid, given a bunch of scattered observations at  
station points.  It is also possible to consider a multi-level or three-dimensional optimal 
interpolation, but it is just a messy extension of the example we will give here.  This 
example follows Schlatter (1975).  The vector of state variables at a grid point is defined 
by z.  It is expressed in terms of the first guess of the vector at the grid point, zf, corrected 

by an optimal weighting of the deviations of the observations vector at N nearby station 
points, xi,  from the first guess field at those station points, x fi .  The observation vectors 

at both the grid point and the surrounding station points consist of two wind components 
and height of the pressure surface.  We write this as, 

 

 

u

v

h

 

 
 

 
 

 

 
 

 
 
=z=z f + Ai

i=1

n

x i x fi( )  (5.24) 

 

Note that the correction has been expressed in terms of a deviation of the observation at 
the station point from a first guess based on the previous analysis or some other a priori 
information.  This is weighted by the coefficient A, with subscript to indicate the station.  
Each Ai may indeed be a 3x3 matrix, which converts the vector of deviations at each 
station point into a vector of corrections at the grid point.  We can bring the summation 
into the matrix operation by extending the deviation vector to include all n  station points, 
so that x and xf are each 3n long.  Then A becomes a 3x3n matrix.  In this case, we can 
write the matrix problem for finding the best guess at the grid point, z, as, 

 

 z= z f +A x x f( )  (5.25) 

 

So the vector z of length 3 is determined by adding a correction to the first guess, zf, 
which is determined by multiplying the 3x3n  matrix A times the vector of deviations at 
the station points x-xf  , which is 3n long.  The weighting coefficients in the matrix are 
determined by minimizing the inner product of the error vector, which is the difference 
between the estimated state vector at the grid point, z, and its true value zt.   

 zt z( ) zt z( )
T

 (5.26) 

 



ATM 552 Notes:        Gridding of Data - Maps    - Section 5     D.L. Hartmann Page 113  

Copyright 2008  Dennis L. Hartmann 12/31/07   12:06 PM 113

where  represents an average over an ensemble of cases, or the expected value 
operator, if you like.  We can substitute (5.25) into (5.26) and perform the minimization 
with respect to the matrix of coefficients A . 

 

 

zt z( ) zt z( )
T

= zt z f A x x f( )( ) zt z f A x x f( )( )
T

= zt z f zt z f
T

zt z f A x x f
T

A x x f zt z f
T
+A x x f A x x f( )

T

 (5.27) 

 
Next we differentiate (5.27) with respect to the matrix of coefficients A , you can show 
by trying to do the problem in scalar form that differentiation with respect to matrices is 
similar to differentiation with respect to scalars.  If we perform the differentiation of 
(5.27) with A  and set the result to zero, we obtain the desired expression for the 
coefficient matrix. 
 

0= zt z f x x f
T

x x f zt z f
T

 

+ x x f A x x f( )
T
+A x x f x x f

T
 

 
After a little rearrangement and noting that, if a matrix product is zero, then its transpose 
will be zero also, we find the condition that A  must satisfy, 

 0= zt z f x x f
T
+A x x f xt x f

T
 (5.28) 

 
which can be solved for the matrix of coefficients, 
 

 A= zt z f x x f
T

x x f x x f
T 1

  (5.29) 

or  

A=Czx Cxx( )
1

 

 
where Cz x  is the covariance matrix between the grid point and the station points and 

Cxx  is the covariance matrix of the station points.  The A matrix has nxJ2 coefficients.  If  
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J=3 variables and n=5 stations are used to define each grid value, then the matrix has 45 
coefficients for each grid point.  Cxx  is readily calculable from observations, since it is 
just the covariance matrix between observations.  Rather than specify a different matrix 
for every set of stations, we might make Cxx  a function only of distance between the 
points and latitude, for example.  Cz x  cannot be calculated directly, since we don’t know 

the values at the grid points.  We can assume again that the covariance is only a function 
of distance, and obtain Cz x  from Cxx .  This is a lot like Cressman’s correction scheme, 

except that the influence function is calculated from the behavior of the field itself, and 
the observed statistical relationships between winds and velocities are used (they are 
contained in the covariance matrices).  With a little more work you can also objectively 
take account of the uncertainty of the measurements in an optimum way. 

 
5.5  Operational Data Assimilation for Weather Forecasting 

 
In weather forecasting, the weather prediction model itself is used to determine 

the best analysis of available observations with which to begin a forecast.  Often, the data 
are modified to suppress gravity waves (normal mode initialization) that would otherwise 
adversely affect the forecast.  These initialized data, which are heavily influenced by the 
model dynamics, physics and numeric are then used in diagnostic studies of weather and 
climate.  Variational techniques are used, with the current state of the art being four-
dimensional variational assimilation of data.  In Chapter 8 of these notes we give a 
general introduction to the Kalman Filter, which is believed to be the ultimate method of 
optimally incorporating observations into a numerical model to produce the best analysis 
of an evolving dynamical system.   

 
In discussing the data assimilation problem for weather forecasting, one must get 

specifically into the dynamical equations of atmospheric flow, which would take us 
beyond the focus of this course.  Data assimilation is discussed more fully in 
Daley(1991).  You will find that in this course we cover the material in about the first 
half of Daley’s book.  Least squares analysis of the type we have been discussing forms a 
big part of modern operational data assimilation.  The Kalman Filter is discussed near the 
end of Daley’s book.  It is also beginning to be used in oceanography (Ballabrera, et al. 
2001) and in hydrology (Reichle, et al., 2002). 
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