
Repeated Eigenvalues

We now consider the case of repeated eigenvalues. In the case when we have enough
linearly independent eigenvectors, we will not have to do anything special, but we will
have to deal with the possibility that we may not have enough linearly independent
eigenvectors.

1 Repeated Eigenvalues: Algebraic and Geomet-

ric Multiplicity

We know that if we have a system of n first order equations, we need n vector valued
solutions. We also know that we get at least one new linearly independent eigenvector
(and thus solution) per eigenvalue of the matrix. However, we have already seen that
it is possible to have less than n eigenvalues and still have n linearly independent
vectors.
In the following example, we solve a in which the matrix has only one eigenvalue 1,
but has two linearly independent eigenvectors. In this case, we do not have to do
anything special.

Example:

Solve

x′ =

(

2 0
0 2

)

x

It is not difficult to see that the characteristic polynomial is (λ− 2)2 = 0, so we have
a repeated eigenvalue λ = 2.
It is also not difficult to see that when we solve for eigenvectors, we get both x1 and
x2 as free variables, so that we have eigenvectors (1, 0)T and (0, 1)T . Thus the general
solution is

c1

(

1
0

)

e2t + c2

(

1
0

)

e2t

In particular, it can be shown that this is the case whenever a real matrix A in
x′ = Ax is symmetric. (A symmetric matrix is one for which AT = A.) Here’s
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another example:

Example:

Solve

x′ =







0 1 1
1 0 1
1 1 0





x

It is not difficult to see that the characteristic polynomial is (λ − 2)(λ + 1)2 = 0, so
we have a repeated eigenvalue λ = −1.
It is also not difficult to see that when we solve for eigenvectors associated with
λ = −1, we get both x2 and x3 as free variables:







1 1 1
1 1 1
1 1 1













v1

v2

v3





 =







0
0
0







so that we have eigenvectors (−1, 1, 0)T and (−1, 0, 1)T .

However, if we have an eigenvalue with multiplicity n which has less than n linearly
independent eigenvectors, we will not have enough solutions. With this in mind, we
define the algebraic multiplicity of an eigenvalue to be the number of times it is a root
of the characteristic equation. We define the geometric multiplicity of an eigenvalue
to be the number of linearly independent eigenvectors for the eigenvalue.
Thus, in Example 1 above, λ = 2 is an eigenvalue with both algebraic and geometric
multiplicity of two. However, it is possible for there to be less than n linearly inde-
pendent eigenvectors if an eigenvalue is repeated.

Example:

Find all solutions of the form veλt to

x′ =

(

3 −18
2 −9

)

x

The eigenvalues are given by

∣

∣

∣

∣

∣

3 − λ −18
2 −9 − λ

∣

∣

∣

∣

∣

= (3 − λ)(−9 − λ) + 36 = λ2 + 6λ + 9 = (λ + 3)2 = 0

so we have only λ = −3.
The corresponding eigenvector is given by solving

(

3 + 3 −18
2 −9 + 3

)(

v1

v2

)

=

(

0
0

)
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Solving this system gives us just v1 = 3v2, so we get only one linearly independent
eigenvector, which can be represented as v = (3, 1)T . So we get only one solution

veλt =

(

3
1

)

e−3t

Therefore, the algebraic multiplicity of λ = −3 is

and the geometric multiplicity of λ = −3 is .

When the geometric multiplicity of an eigenvalue is less than the algebraic multiplicity
(as in Example 1), we say the matrix is defective. In the case of defective matrices,
we must search for additional solutions.

2 Defective Matrices

In the case of a defective matrix, we must search for additional solutions. Suppose
we try the obvious generalization: Inspired by the case of repeated roots of the
characteristic equation for second order equations, we search for a solution of the
form vteλt.
If we plug vteλt into the differential equation x′ = Ax, we get the following:

d

dt

(

vteλt
)

= A(vt)

v(eλt + λteλt) = Avteλt

or rearranging and canceling out the eλt:

v = (Av − λv)t

However, this must be satisfied for all values of t, including t = 0. But this would
imply v = 0, and this will not do.
Recall that when we used reduction of order to find a solution teλt from the solution
eλt, we actually got a solution of the form c1te

λt + c2e
λt, but we ignored the second

part of the solution as it duplicated our original. It turns out that in the case of a
system, we will not be able to ignore this second part of the solution.
So we will consider solutions with both a teλt term, and an exponential term eλt, each
with their own vector. So we try a solution

vteλt + weλt

Then, when we plug this into x′ = Ax, we get

(vteλt + weλt)′ = A(vteλt + weλt)

veλt + vλteλt + wλeλt = Avteλt + Aweλt

(v + λw)eλt + (λv)teλt = (Aw)eλt + (Av)teλt
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Then we can equate the coefficients on teλt and eλt to see that we get the two equations

Av = λv or (A − λI)v = 0

and
Aw = v + λw or (A− λI)w = v

The first equation simply says that λ and v are an eigenvalue and eigenvector pair
for A. The second is a system to be solved. It can be shown that the system can
always be solved for w. (The vector w is called a generalized eigenvector for A.)

Example:

Find the general solution to

x′ =

(

3 −18
2 −9

)

x

We already determined that the only eigenvalue was λ = −3 and the corresponding
eigenvector was v = (3, 1)T . To find our second solution, we need to solve

(A − λI)w = v

or
(

3 + 3 −18
2 −9 + 3

)(

w1

w2

)

=

(

3
1

)

















(

w1

w2

)

=

















We row reduce the augmented matrix
(

6 −18 3
2 −6 1

)

Multiplying row one by 1/6 and row two by 1/2 yields
(

1 −3 1/2
1 −3 1/2

)

Subtracting row one from row two leaves us with the reduced system
(

1 −3 1/2
0 0 0

)

So we must have w1 − 3w2 = 1/2. Let us choose w2 = 0, so w1 = 1/2. Thus our
generalized eigenvector is (1/2, 0)T , and our general solution is

c1veλt + c2(vteλt + weλt)
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or

c1

(

3
1

)

e−3t + c2

[(

3
1

)

te−3t +

(

1/2
0

)

e−3t

]

Notice in the above that we cannot ignore the weλt term of the new solution, because
w and v are not simply different by a constant multiple.

Example:

Solve the initial value problem

x′ =







5 −4 0
1 0 2
0 2 5





x, x(0) =







5
1
0







We start by finding the eigenvalues:

∣

∣

∣

∣

∣

∣

∣

5 − λ −4 0
1 −λ 2
0 2 5 − λ

∣

∣

∣

∣

∣

∣

∣

= (5 − λ)

∣

∣

∣

∣

∣

−λ 2
2 5 − λ

∣

∣

∣

∣

∣

+ 4

∣

∣

∣

∣

∣

1 2
0 5 − λ

∣

∣

∣

∣

∣

+ 0

= (5 − λ) [−λ(5 − λ) − 4] + 4(5 − λ)

= −(5 − λ)2λ = 0

So we have two eigenvalues:

We look for eigenvectors. With λ = 0, we have to solve the system with augmented
matrix







5 −4 0 0
1 0 2 0
0 2 5 0







We reorganize the rows, moving rows two and three up, and row one down to row
three, which almost finishes our work:







1 0 2 0
0 2 5 0
5 −4 0 0







We then subtract five times row one from row three, and see that rows two and three
are now constant multiples of each other:







1 0 2 0
0 2 5 0
0 −4 −10 0
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So adding twice row two to row three, we get







1 0 2 0
0 2 5 0
0 0 0 0







Therefore, the eigenvectors must satisfy x1 + 2x3 = 0 and 2x2 + 5x3 = 0, with x3 a
free variable.
Choosing x3 = 2 allows us to have whole number answers x2 = −5 and x1 = −4, so
we get eigenvector (−4,−5, 2)T for the eigenvalue 0.
In the case where λ = 5, we must solve







0 −4 0 0
1 −5 2 0
0 2 0 0







Here, we can multiply row three by 1/2 and use it to eliminate al the other entries in
column two:







0 0 0 0
1 0 2 0
0 1 0 0







Thus, our equations reduce to x1 + 2x3 = 0 and x2 = 0, with x3 free. So a represen-
tative eigenvector is (−2, 0, 1)T .
We have only two linearly independent eigenvectors, but a system of three equations
and three functions. Thus, we must look for a generalized eigenvector for the repeated
eigenvalue λ = 5. We need to find a vector w such that

or






0 −4 0
1 −5 2
0 2 0













w1

w2

w3





 =







−2
0
1







So we tackle the augmented matrix







0 −4 0 −2
1 −5 2 0
0 2 0 1





 or rearranged:







1 −5 2 0
0 2 0 1
0 −4 0 −2







We use row two to eliminate row three, and add 5/2 row two to row one, leaving







1 0 2 5/2
0 2 0 1
0 0 0 0







6



Thus we have w1 + 2w3 = 5/2 and 2w2 = 1, with w3 free. Setting w3 = 1, we get a
generalized eigenvector (1/2, 1/2, 1)T . Thus, combining our three solutions, we get

c1







−4
−5
2





+ c2







−2
0
1





 e5t + c3













−2
0
1





 te5t +







1/2
1/2
1





 e5t







(Recall that (−4,−5, 2)T was associated with the eigenvalue λ = 0.)
To satisfy the initial conditions, we must have x(0) = (5, 1, 0)T . Plugging in t = 0
gives us

x(0) =







−4c1 − 2c2 + 1

2
c3

−5c1 + 1

2
c3

2c1 + c2 + c3





 =







5
1
0







This is the same as solving the system represented by the augmented matrix







−4 −2 1/2 5
−5 0 1/2 1
2 1 1 0







After row reductions, we obtain







1 0 0 0
0 1 0 −2
0 0 1 2







So we get a solution with c1 = 0, c2 = −2, and c3 = 2.
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