
Pattern Analyses (EOF Analysis)

• Introduction

• Definition of EOFs 
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2.2 Pattern Analyses

Introduction: What is it about?

• Pattern analyses are techniques used to identify patterns of the 
simultaneous temporal variations

• Given a m-dimensional time series     , the anomalies     defined as the 
deviations from the sample mean can be expanded into a finite series

• The patters are specified using different minimizations

• The patterns can be orthogonal
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2.2 Pattern Analyses

Introduction: What can patterns and their coefficients describe?

• Standing Signals

• Propagating Signals

A fixed spatial structure whose strength varies with time

A structure propagating in space. It has to be described by two patterns such 
that the coefficient of one patter lags (or leads) the coefficient of the other one 
by a fixed time lag (often 90o)

Schematic 
representation of a 
linearly propagating 
(left) and  clockwise 
rotating (right) wave 
using two patterns: pi 
and pr. If the initial 
state of the wave is pi, 
then its state a quarter 
of period later will be 
pr. 
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Example: Daily Profile of Geopotential Height over Berlin

Data: 20-year data set containing 120 winter days times 9 vertical levels between 950 
and 300 hPa, i.e. 20x120x9=21600 observations

How should we describe the spatial variability?

One way is to compute the variance at each 
level. This however does not tell us how the 
variations are correlated in the vertical

Solution: describing spatial correlations using a 
few EOFs

Usefulness:

• To identify a small subspace that contains 
most of the dynamics of the observed system

• To identify modes of variability

The first two EOFs, labeled z1 and z2, of 
the daily geopotential height over Berlin in 
winter. The first EOF represents 91.2% 
and the second 8.2% of the variance. They 
may be identified with the equivalent 
barotropic mode and the first baroclinic 
mode of the tropospheric circulation.
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Introduction: Elements of Linear Analysis  

Eigenvalues and eigenvectors of a real square matrix

Let A be an mxm matrix. A real or complex number λ is said to be an eigenvalue of 
A, if there is a nonzero m-dimensional vector    such that

Vector     is said to be an eigenvector of A
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• Eigenvectors are not uniquely determined

• A real matrix A can have complex eigenvalues. The corresponding eigenvectors are 
also complex. The complex eigenvalues and eigenvectors occur in complex conjugate 
pairs 

Hermitian matrices

A square matrix A is Hermitian if

where       is the conjugate transpose of A. Hermitian matrices have real eigenvalues 
only. Real Hermitian matrices are symmetric. Eigenvalues of a symmetric matrice are 
non-negative and eigenvectors are orthogonal

AA =cT

cTA
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Introduction: Elements of Linear Analysis

Bases

A collection of vectors               is said to be a linear basis for an m-
dimensional vector space V if for any vector          there exist coefficients αi, 
i=1,…,m, such that 

The basis is orthogonal, when 

or orthonormal when 

where      denotes the inner product which defines a vector norm . One has
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Definition of Empirical Orthogonal Functions: The First EOF

EOFs are defined as parameters of the distribution of an m-dimensional random 
vector     . The first EOF     is the most powerful single pattern is representing the 
variance of     defined as the sum of variances of the elements of    . It is obtained by 
minimizing, subjected to             ,

which results in

where λ is the Langrange multiplier associated with the constraint  
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More EOFs
Having found the first EOF, the second is obtained by minimizing

subjected to the constraint 1
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corresponds to its second largest eigenvalue λ2.     is 
orthogonal to    because the eigenvectors of a 
Hermitian matrix are orthogonal to each other
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Theorem

Let     be an m-dimensional real random vector with mean   and covariance matrix Σ. 
Let                    be the eigenvalues of Σ and let            be the corresponding 
eigenvectors of unit length. Since Σ is symmetric, the eigenvalues are non-negative 
and the eigenvectors are orthogonal.

• The k eigenvectors that correspond to λ1,…,λk minimize
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components

gives the mean squared error incurred 
when approximating     in a k-
dimensional subspace
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sunspace will leads to mean squared 
errors at least as large as εk



Interpretation

• The bulk of the variance of    can often be represented by a first few EOFs

• The physical interpretation is limited by the fundamental constraint that EOFs are 
orthogonal. Real world processes do not need to be described by orthogonal 
patterns or uncorrelated indices
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Properties of the EOF Coefficients

The covariances of EOF coefficients αi are given by
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The EOF coefficients are uncorrelated
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Vector Notation
The random vector     can be written as

with                                      , which leads to

where Λ is the diagonal mxm matrix composed of the eigenvalues of Σ.
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Degeneracy
It can be shown that the eigenvalues are the m roots of the m-th degree polynomial

where I is the mxm identity matrix.

( )Iλλ −Σ= det)(p

• If λο is a root of multiplicity 1 and    is the corresponding eigenvector, then   is unique 
up to sign

• If λο is a root of multiplicity k, the solution space

is uniquely determined  in the sense that it is orthogonal to the space spanned by the 
m-k eigenvectors of Σ with    . But  any orthogonal basis for the solution space can 
be used as EOFs. In this case the EOFs are said to be degenerated.
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Bad: patterns which 
may represent 
independent 
processes cannot be 
disentangled

Good: for k=2 the pair of EOFs and their coefficients 
could represent a propagating signal. As the two 
patterns representing a propagating signal are not 
uniquely determined, degeneracy is a necessary 
condition for the description of such signals
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Coordinate Transformations

Consider two m-dimensional random vectors    and    related through            where 
L is an invertible matrix. If the transformation is orthogonal (i.e. L-1=LT), the 
eigenvalue of the covariance matrix of    , ΣXX, is also the eigenvalue of the 
covariance matrix of   , ΣZZ, and the EOFs of   ,    , are related to those of   ,    , viaZ
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Estimation of Empirical Orthogonal Functions

Approach I

Estimate the covariance matrix and use the eigenvectors and the eigenvalues of the 
estimated covariance matrix as estimators of the EOFs and the corresponding 
eigenvalues

Approach II

Use a set of orthogonal vectors that represent as much as the sample variance as 
possible as estimators of EOFs

The two approaches are equivalent and lead to the following theorem
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Theorem

Let     be the estimated covariance matrix derived from a sample
representing n realization of    . Let             be the eigenvalues of     and              
the corresponding eigenvectors  of unit length. Since    is symmetric, the 
eigenvalues are non-negative and the eigenvectors are orthogonal

• The k eigenvectors corresponding to    minimize
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The EOF estimates represent the sample variance in the 
same way as the EOFs do with the random variable
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Properties of the Coefficients of the Estimated EOFs

• As with the true EOFs, the estimated EOFs span the full m-dimensional vector space. 
The random vector    can be written as

• When    is multivariate normal, the distribution of the m-dimensional vector of EOF 
coefficients, conditional upon the sample used, is multivariate normal with mean and 
covariance matrix

where     has     in j=th column

• The variance of the EOF coefficients computed from the sample is

• The sample covariance of a pair of EOF coefficients computed from the sample is 
zero 
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The Variance of EOF Coefficients of a Given Set of Estimated EOFs

Given a set of eigenvalues and EOFs derived from a finite sample, any random 
vector     can be represented in the space spanned by these estimated EOFs using 
the transformation

Question: is the variance of the transformed random variables   equal the 
true EOF coefficient (i.e. is the eigenvalue of the estimated covariance matrix 
equal to the true eigenvalue)? 
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The Bias in Estimating Eigenvalues

The bias can be assessed using the following asymptotic formulae that apply to 
eigenvalue estimates computed from samples that can be represented by n iid normal 
random vectors (Lawley)
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Reliability of EOF estimates I
The reliability is often assessed using so-called selection rules. The basic supposition is 

full space = signal-subspace (EOFs) + noise-subspace (degenerated)

Thus, the idea is to identify the signal-subspace as the space spanned by the EOFs 
that are associated with large, well-separated eigenvalues. This is done by considering 
the eigenspectrum

Problems

• The determination of signal- and noise-subspace is vague. Generally, the shape of 
the eigenspectrum is not necessarily connected to the presence or absence of 
dynamical signal

• No consideration of the reliability of the estimated patterns, since the selection rules 
are focused on the eigenvalues 
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Reliability of EOF estimates II: North’s Rule-of-Thumb

Using a scale argument, North et al. obtained an approximation for ‘typical’ error of 
the estimated EOFs, which in combination with a simplified version of Lawley’s 
formula, reads

where c and c’ are 
constants, n is the 
number of 
independent 
samples, 
∆λ~(2/n)1/2 λi the 
‘typical error’ in      , 
λclosest the closest 
eigenvalue to λi
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• The first-order error is of the order of (1/n)1/2. Thus 
convergence to zero is slow

• The first-order error is orthogonal to the true i-th EOF

• The estimate of the i-th EOF is most strongly 
contanminated by the patterns of those other EOFs that 
correspond to the eigenvalues λj closest to λi. The 
smaller the difference between λj and λi, the more 
severe the contamination  

North’s ‘Rule-of-Thumb’

If the sampling error of a particular eigenvalue is 
comparable to or larger than the spacing between λ and 
a neighboring eigenvalue, then the sampling error of the 
i-th EOF will be comparable to the size of the 
neighboring EOF

EOFs are mixed
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North et al.’s Example

North et al. constructed a synthetic example in which the first four eigenvalues and 
the typical errors for the estimated eigenvalues are

λ1=14, 12.6, 10.7, 10.4, λ1-λ2=1.4, λ2-λ3=2, λ3-λ4=0.3

|∆λi|=1, for n=300, |∆λi|=0.6 for n=1000

The first two 
EOFs are 
mixed when 
n=300. 

The third and 
fourth EOFs 
are mixed for 
both n=300 
and n=1000
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Examples

• The first EOF represents ENSO, whose 
coefficient is shown as curve D

• The second EOF may represent trend, 
as suggested by its coefficient shown as 
curve A.

The first two EOFs of the 
monthly mean sea surface 
temperature of the global 
ocean between 40S and 60N
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Examples

The first EOF of the tropospheric zonal 
wind between 45S and 45N at 850, 
700, 500, 300 and 200 hPa

• The analysis is performed in two 
steps by first estimating EOF at each 
level and retaining coefficients 
representing 90% of the variance 
and secondly performing EOF 
analysis with a vector composing EOF 
coefficients selected for five levels

• The coefficient time series (curve B) 
exhibits a trend parallel to that found 
in the coefficient of the second SST 
EOF

• Does this trend originate from a 
natural low-frequency variation or 
from some other cause?

200hPa

300hPa

500hPa

700hPa

850hPa

11%
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Rotation of EOFs

Why rotated EOFs?

One hopes that the rotated EOFs can be more easily interpreted than the EOFs themselves

The idea of  ‘rotation’

Given a subspace that contains a substantial fraction of the total variance, it is sometimes 
interesting to look for a linear basis of the subspace with specified properties, such as

• Basis vectors that contain simple geometrical patters, e.g. patterns which are regionally 
confined or have two regions, one with large positive and the other with negative values

• Basis vectors that have time coefficients with specific types of behavior, such as having 
nonzero values only during some compact time episodes

The result depends on the number or the length of the input vectors, and on the measure 
of simplicity

Pro: a means for diagnosing physically meaningful and statistically stable patterns
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The Mathematics of the ‘Rotation’

‘Rotation’ consists of a transformation and a constant

The transformation

A set of  ‘input’ vectors                          
is transformed into another set of 
vectors                       by means of an 
invertible K x K matrix R=(rij):

Q=PR
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The constraint

The matrix R is chosen from a 
class of matrices, such as 
orthogonal (R-1=RT), subjected 
to the constraint that a 
functional V(R) is minimized
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Consequence of a Orthogonal Transformation

A random vector which is represented by the K input vectors can be written, because 
of the rotation, as

where    and              are K-dimensional vector of random expansion coefficients for 
the input and the rotated patterns, respectively.
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Thus, given orthogonal input vectors, the rotated vectors will be orthogonal only if 
D=I, or, if the input vectors are normalized to unit length

Thus, given uncorrelated expansion coefficients of the input vectors, the coefficients 
of the rotated patterns are also pair wise uncorrelated only if coefficients αj have unit 
variance
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If R is orthonormal
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Consequence of a Orthogonal Transformation

• The rotated EOFs derived from normalized EOFs are also orthogonal, but their time 
coefficients are not uncorrelated

• The rotated EOFs derived from non-normalized EOFs (i.e. the variance of EOF 
coefficients equal one) are no longer orthogonal, but the coefficients are pairwise
uncorrelated

• The result of the rotation depends on the lengths of the input vectors. 
Differently scaled but directionally identical sets of input vectors lead to 
sets of rotated patterns that are directionally different from one another

The rotated vectors are a function of the input vectors rather than the 
space spanned by the input vectors

• The rotated EOFs and their coefficients are not orthogonal and 
uncorrelated at the same time. Consequently, the percentage of variance 
represented by the individual patterns is no longer additive
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An Example of the Simplicity Functional: The ‘Varimax’ Method

‘Varimax’ is a widely used orthogonal rotation that minimizes the simplicity functional

with
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• The functional fV can be viewed as the spatial variance of the normalized squares 
(qi/si)2, i.e. fV measures the ‘weighted square amplitude’ variance of the rotated EOF
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Example I: Reproducible Identification of Teleconnection Patterns

Barzon and Livzey used a varimax rotation of normalized EOFs to isolate the dominant 
circulation patterns in the Northern Hemisphere:

• EOFs are computed for each calendar month using a 35-year data set of monthly 
mean 700 hPa heights

• Rotation is performed on the first 10 EOFs representing 80% of the total variance in 
winter and 70% in summer

NAO in winter NAO in summer PNA in winter
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Example II: Weak Effect of Rotation

EOFs and 
rotated EOFs of 
North Atlantic 
monthly mean 
SLP in winter:

• The 
difference 
between the 
unrotated and 
the rotated 
EOF is not 
large

• If the EOFs 
have simple 
structures, the 
effect of 
rotation is 
negligible

EOFs Rotated EOFs derived from 
K=5 normalized EOFs

Rotated EOFs derived from 
K=10 non-normalized EOFs
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Example III: Rotation could split features into different patterns even though they 
are part of the same physical pattern

EOFs and 
rotated EOFs 
of North 
Atlantic 
monthly mean 
SST in DJF:

• The rotated 
EOFs tend to 
represent the 
three action 
centers in the 
first EOF 
separately in 
different EOFs

Rotated EOFs derived from 
K=5 normalized EOFs

Rotated EOFs derived from 
K=5 non-normalized EOFsEOFs


