Pattern Analyses (EOF Analysis)
e Introduction

e Definition of EOFs

e Estimation of EOFs

e Inference

e Rotated EOFs



2.2 Pattern Analyses

Introduction: What is it about?

e Pattern analyses are techniques used to identify patterns of the
simultaneous temporal variations

« Given a m-dimensional time series X, , the anomalies X, defined as the
deviations from the sample mean can be expanded into a finite series

X _Z&ltﬁl

with time coefficients &, and fixed patterns p' . Equality is
usually only possible when k=m

e The patters are specified using different minimizations
EOFs: X, is optimally described by i&i,tﬁ‘ = Z( i 6‘] = min!
POPs: 7({ is optimally described by A% = Z(xt—Axt_l) = min!

e The patterns can be orthogonal



2.2 Pattern Analyses

Introduction: What can patterns and their coefficients describe?

e Standing Signals

A fixed spatial structure whose strength varies with time

e Propagating Signals

A structure propagating in space. It has to be described by two patterns such
that the coefficient of one patter lags (or leads) the coefficient of the other one
by a fixed time lag (often 90°)
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Schematic
representation of a
linearly propagating
(left) and clockwise
rotating (right) wave
using two patterns: pi
and pr. If the initial
state of the wave is pi,
then its state a quarter
of period later will be

pr.
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Example: Daily Profile of Geopotential Height over Berlin

Data: 20-year data set containing 120 winter days times 9 vertical levels between 950
and 300 hPa, i.e. 20x120x9=21600 observations

GPDAM

How should we describe the spatial variability?

One way is to compute the variance at each St "
level. This however does not tell us how the 400- 7
variations are correlated in the vertical 500- .
600 4
700 3
Solution: describing spatial correlations using a 850 1 E
few EOFs 1000

Usefulness:
The first two EOFs, labeled z1 and z2, of
e To identify a small subspace that contains the daily geopotential height over Berlin in
most of the dynamics of the observed system winter. The first EOF represents 91.2%
and the second 8.2% of the variance. They
eTO identify modes of variability may be identified with the equivalent

barotropic mode and the first baroclinic
mode of the tropospheric circulation.
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Introduction: Elements of Linear Analysis

Eigenvalues and eigenvectors of a real square matrix

Let A be an mxm matrix. A real or complex number A is said to be an eigenvalue of
A, if there is a nonzero /m-dimensional vector € such that

Vector € is said to be an eigenvector of A

e Eigenvectors are not uniquely determined

e A real matrix A can have complex eigenvalues. The corresponding eigenvectors are
also complex. The complex eigenvalues and eigenvectors occur in complex conjugate
pairs

Hermitian matrices
A square matrix A is Hermitian if
A = A

T . o oo . c
where A is the conjugate transpose of A. Hermitian matrices have real eigenvalues
only. Real Hermitian matrices are symmetric. Eigenvalues of a symmetric matrice are
non-negative and eigenvectors are orthogonal
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Introduction: Elements of Linear Analysis

Bases

A collection of vectors {é’l,---,ém} Is said to be a linear basis for an /-
dimensional vector space V if for any vectora<V there exist coefficients o,
I=1,...,m, such that

a=> a8

The basis is ortrluogonal, when (€.8")=0ifi= ]

or orthonormal when (€',6')=0ifi=j and ¢'|=1 foralli=1..,m

where {--) denotes the inner product which defines a vector norm ||. One has
(%,)=x"y and | = (x,X)

Transformations
If {€"-.€"} is a linear basis and y=2 @€ | then
2 :<y’éa>

where &, is the adjoint of & satisfying (¢',&])=0 fori#]j and (¢',})=1 for i=j
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Definition of Empirical Orthogonal Functions: The First EOF

EOFs are defined as parameters of the distribution of an /m-dimensional random
vector X . The first EOF &'is the most powerful single pattern is representing the
variance of X defined as the sum of variances of the elements of X. It is obtained by

minimizing, subjected to |[z1* _1 |,
g J e =1 Note:

= E(H)Z —<)Z,é1>é1 2) :Var(X)—Var(<)Z,él>) Var(<>z >)= E(()‘(’Tél)-r X’Tél)
which results in _ gyl — g g5l = 4
TE' - 28" =0

where 1 is the Langrange multiplier associated with the constraint H§1H2 —1

&'is an eigenvector of covariance matrix = with a
corresponding eigenvalue A!

Minimizing ¢, is equivalent to maX|m|2|nq the variance of X contained in the 1-
dimensional subspace spanned by &, Var(<>? e1>)

g, IS minimized when €'is an eigenvector of X associated
with its largest eigenvalue A
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More EOFs

Having found the first EOF, the second is obtained by minimizing

g = E(H)Z (X8 - (X &2)e? 2)

subjected to the constraint Hé ZHZ =1

€2%is an eigenvector of covariance matrix ¥ that
corresponds to its second largest eigenvalue A,. &%is
orthogonal to &'because the eigenvectors of a
Hermitian matrix are orthogonal to each other

EOF Coefficients or Principle Components

The EOF coefficients are given by
o =(X,8)=X"e' =g" X
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Theorem

Let X be an m-dimensional real random vector with mean and covariance matrix .
Let 424 2--24, Dbe the eigenvalues of £ and let €',---.€" be the corresponding
eigenvectors of unit length. Since X is symmetric, the eigenvalues are non-negative
and the eigenvectors are orthogonal.

» The k eigenvectors that correspond to A,,...,A, minimize

Sig - i
&= E(H(X ‘”)‘§<X e >j use of any other A-dimensional
k sunspace will leads to mean squared
e & =Var(X)-Y 4 errors at least as large as g,
i=1
. Vaf(i)=zﬁi gives the mean squared error incurred

when approximating X in a A
dimensional subspace

broken up the total variance into m
components
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Interpretation

» The bulk of the variance of X can often be represented by a first few EOFs

e The physical interpretation is limited by the fundamental constraint that EOFs are
orthogonal. Real world processes do not need to be described by orthogonal
patterns or uncorrelated indices
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Properties of the EOF Coefficients

The covariances of EOF coefficients o, are given by

The EOF coefficients are uncorrelated
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Vector Notation

The random vector X can be written as

—

X =Pa, or@=P'X
with P=(€"1€*|-[e") @=(a,~.a,)" which leads to

3 = E(XXT)=PE(aa" JP"
— PAP

where A is the diagonal mx/m matrix composed of the eigenvalues of X.
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Degeneracy
It can be shown that the eigenvalues are the m roots of the m-th degree polynomial

p(1) = det(Z - Al)

where | is the mxm identity matrix.

- If ), is a root of multiplicity 1 and € is the corresponding eigenvector, then€ is unique
up to sign
* If A, is a root of multiplicity 4, the solution space
SE=1¢8
IS uniquely determined in the sense that it is orthogonal to the space spanned by the

m-k eigenvectors of £ with 4 =4, . But any orthogonal basis for the solution space can
be used as EOFs. In this case the EOFs are said to be degenerated.

Bad: patterns which Good: for k=2 the pair of EOFs and their coefficients
may represent could represent a propagating signal. As the two
independent patterns representing a propagating signal are not
processes cannot be uniquely determined, degeneracy is a necessary

disentangled condition for the description of such signals
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Coordinate Transformations

Consider two m-dimensional random vectors X and Z related through 7-1X where
L is an invertible matrix. If the transformation is orthogonal (i.e. L*=LT"), the
eigenvalue of the covariance matrix of X , 2y, is also the eigenvalue of the
covariance matrix ofZ , ¥,,, and the EOFs of X, €, are related to those ofZ ,&* , via

€7 =L&”"

Proof:

Since X, =L, L, 26" =18"

¥,L8" =LY, L'LE =LX,, 6" = ALE"

Consequence of using an orthogonal transformation:

The EOF coefficients are invariant, since

dy =PyX =PyL'Z=(LP,) Z=P]Z=a,



2.2 Pattern Analyses

Estimation of Empirical Orthogonal Functions

Approach |

Estimate the covariance matrix and use the eigenvectors and the eigenvalues of the
estimated covariance matrix as estimators of the EOFs and the corresponding
eigenvalues

Approach 11

Use a set of orthogonal vectors that represent as much as the sample variance as
possible as estimators of EOFs

The two approaches are equivalent and lead to the following theorem
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Theorem

LetS be the estimated covariance matrix derived from a sample {>:<1 X,
representing 7 realization of X. Let j,..., 1 be the eigenvalues of ¥ and ... &
the corresponding eigenvectors of unit length. SinceX is symmetric, the
eigenvalues are non-negative and the eigenvectors are orthogonal

 The k eigenvectors corresponding to 4,,---, 4, minimize

The EOF estimates represent the sample variance in the
same way as the EOFs do with the random variable
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Properties of the Coefficients of the Estimated EOFs

e As with the true EOFs, the estimated EOFs span the full m-dimensional vector space.
The random vector X can be written as
X=Yae with =(X¢)

j=1

e When X is multivariate normal, the distribution of the /mdimensional vector of EOF
coefficients, conditional upon the sample used, is multivariate normal with mean and
covariance matrix

E(G| %, %) =P fi, Covld,é|%, %, )=PTsP
where P has &1in j=th column
e The vnariance2 of the EOF coefficients computed from the sample is
n2i-al =4
e The sample covariance of a pair of EOF coefficients computed from the sample is
zero

Two interpretations of 4,
. as an estimate of the variance of the true o

. as an estimate of the variance of ¢
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The Variance of EOF Coefficients of a Given Set of Estimated EOFs

Given a set of eigenvalues and EOFs derived from a finite sample, any random
vector X can be represented in the space spanned by these estimated EOFs using
the transformation

X =Pa, a=P'X
Question: is the variance of the transformed random variables ¢, =<>Z,é"> equal the

true EOF coefficient (i.e. is the eigenvalue of the estimated covariance matrix
equal to the true eigenvalue)?

The answer is no . .
e Var(e;)>Var(e;) for the first

Since the first EOF minimizes few EOFs
— - _\_ 2
E E(HX ~(X.8)e j e Since the total variance
one has Is estlmatedqwnp pea_rly zero
; L , bias by Var(x):z/lj , it follows
Var(X )-Var(e,) = E( X ~(X.8)8, j that =
Var(«;) <Var(a,)

. E(Hx ~(%.8)8

2) =Var()?)—Var(o?1)
for the last few EOFs
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The Bias in Estimating Eigenvalues

The bias can be assessed using the following asymptotic formulae that apply to
eigenvalue estimates computed from samples that can be represented by 7 iid normal
random vectors (Lawley)

n‘= j
=

e(i)=2 [z QJ ofn?)

) 2%

n

tof a4 Y » The eigenvalue estimators are consistent:
-3
Var( 1——2( J +0(n?)

ime((4-2f )0

n—o0

e The estimations of the largest and the smallest
eigenvalues are biased

E(i >/, for the largest 4
Yl< A, for thesmallest 4,

(ﬂt,)> A, =Var(e,)>Var(a,) for the largest A,
E(A )< A, =Var(a;)<Var(a,) for the smallest 4,
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Reliability of EOF estimates |
The reliability is often assessed using so-called selection rules. The basic supposition is
full space = signal-subspace (EOFs) + noise-subspace (degenerated)

Thus, the idea is to identify the signal-subspace as the space spanned by the EOFs
that are associated with large, well-separated eigenvalues. This is done by considering
the eigenspectrum

Problems

e The determination of signal- and noise-subspace is vague. Generally, the shape of
the eigenspectrum is not necessarily connected to the presence or absence of
dynamical signal

e No consideration of the reliability of the estimated patterns, since the selection rules
are focused on the eigenvalues
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Reliability of EOF estimates I1: North’s Rule-of-Thumb

Using a scale argument, North et al. obtained an approximation for ‘typical’ error of
the estimated EOFs, which in combination with a simplified version of Lawley’s

formula, reads

~ 2 C ;
AE'~,[—» —F
ZZ-—A
J#i
C'AA
A A

closest ~ Y4

é'j

~
~

where cand ¢ are
constants, nis the
number of
independent
samples,
AL~(2/m)¥2 ); the
‘typical error’ in 4 ,
Aciosest the closest
eigenvalue to A,

» The first-order error is of the order of (1/m)2. Thus
convergence to zero is slow

e The first-order error is orthogonal to the true /-th EOF

e The estimate of the ~th EOF is most strongly
contanminated by the patterns of those other EOFs that
correspond to the eigenvalues 2, closest to A;. The
smaller the difference between ; and ;, the more
severe the contamination

North’s ‘Rule-of-Thumb’

If the sampling error of a particular eigenvalue is
comparable to or larger than the spacing between A and
a neighboring eigenvalue, then the sampling error of the
/-th EOF will be comparable to the size of the
neighboring EOF

EOFs are mixed
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North et al.’s Example

North et al. constructed a synthetic example in which the first four eigenvalues and
the typical errors for the estimated eigenvalues are

A=14,12.6, 10.7, 10.4, A;-A,=1.4, Ay-A3=2, A3-A,=0.3
|AA|=1, for n=300, |AA;]=0.6 for n=1000

True Estimated (n=300) Estimated (n=1000)
14.02 14.47
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SST EOF 2

2.2 Pattern Analyses

60
Examples

40

20

 The first EOF represents ENSO, whose 5
coefficient is shown as curve D

» The second EOF may represent trend, -40
as suggested by its coefficient shown as
curve A.

The first two EOFs of the
monthly mean sea surface
temperature of the global
ocean between 40S and 60N
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Examples

The first EOF of the tropospheric zonal
wind between 45S and 45N at 850,
700, 500, 300 and 200 hPa

e The analysis is performed in two
steps by first estimating EOF at each
level and retaining coefficients
representing 90% of the variance
and secondly performing EOF
analysis with a vector composing EOF
coefficients selected for five levels

e The coefficient time series ( )
exhibits a trend parallel to that found
in the coefficient of the second SST
EOF

e Does this trend originate from a
natural low-frequency variation or
from some other cause?
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1 1
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Rotation of EOFs
Why rotated EOFs?

One hopes that the rotated EOFs can be more easily interpreted than the EOFs themselves

The idea of ‘rotation’

Given a subspace that contains a substantial fraction of the total variance, it is sometimes
interesting to look for a linear basis of the subspace with specified properties, such as

 Basis vectors that contain simple geometrical patters, e.g. patterns which are regionally
confined or have two regions, one with large positive and the other with negative values

 Basis vectors that have time coefficients with specific types of behavior, such as having
nonzero values only during some compact time episodes

The result depends on the number or the length of the input vectors, and on the measure
of simplicity

Pro: a means for diagnosing physically meaningful and statistically stable patterns
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The Mathematics of the ‘Rotation’

‘Rotation’ consists of a transformation and a constant

The transformation

A set of ‘input’ vectors P =(p*|---p")
is transformed into another set of
vectors Q = (G'|---G*) by means of an
invertible A'x K’ matrix R=(r):

Q=PR

or for each vector §'

- K -
ql :Zrijrjj
j=1

The constraint

The matrix R is chosen from a
class of matrices, such as
orthogonal (R1=RT), subjected
to the constraint that a
functional V(R) is minimized
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Consequence of a Orthogonal Transformation

A random vector which is represented by the K input vectors can be written, because
of the rotation, as

—

X =Pa
=(PR)(R'@)=Qp

where@ and g = R™'g are K-dimensional vector of random expansion coefficients for
the input and the rotated patterns, respectively.

If R is orthonormal

Q'Q=R"PTPR=RTDR

Thus, given orthogonal input vectors, the rotated vectors will be orthogonal only if
D=1, or, if the input vectors are normalized to unit length

5, =CovR"@,R'a@)=R"s R
Thus, given uncorrelated expansion coefficients of the input vectors, the coefficients
of the rotated patterns are also pair wise uncorrelated only if coefficients o; have unit

variance
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Conseguence of a Orthogonal Transformation

e The rotated EOFs derived from normalized EOFs are also orthogonal, but their time
coefficients are not uncorrelated

e The rotated EOFs derived from non-normalized EOFs (i.e. the variance of EOF
coefficients equal one) are no longer orthogonal, but the coefficients are pairwise
uncorrelated

e The result of the rotation depends on the lengths of the input vectors.
Differently scaled but directionally identical sets of input vectors lead to
sets of rotated patterns that are directionally different from one another

The rotated vectors are a function of the input vectors rather than the
space spanned by the input vectors

e The rotated EOFs and their coefficients are not orthogonal and
uncorrelated at the same time. Consequently, the percentage of variance
represented by the individual patterns is no longer additive
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An Example of the Simplicity Functional: The ‘Varimax’ Method

‘Varimax’ is a widely used orthogonal rotation that minimizes the simplicity functional

» The functional 7, can be viewed as the spatial variance of the normalized squares
(gi/s;)?, i.e. f, measures the ‘weighted square amplitude’ variance of the rotated EOF

» The constants s; can be chosen freely. One deals with

a raw varimax rotation when s;=1

2

K .
a normal varimax rotation when s =>(p’)

j=1
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Example I: Reproducible Identification of Teleconnection Patterns

Barzon and Livzey used a varimax rotation of normalized EOFs to isolate the dominant
circulation patterns in the Northern Hemisphere:

e EOFs are computed for each calendar month using a 35-year data set of monthly
mean 700 hPa heights

» Rotation is performed on the first 10 EOFs representing 80% of the total variance in
winter and 70% in summer
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Example Il1: Weak Effect of Rotation

Rotated EOFs derived from Rotated EOFs derived from
K_:§_ normalized EOFs Kilo monjnormalizedlEOFs
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North Atlantic
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unrotated and
the rotated
EOF is not
large Y N st

e |f the EOFs B .
have simple VAN
structures, the
effect of
rotation is
negligible e 7 ke, 711¢

! 40N 7

— 208 A 20N~

Se = o | ==
BON 1 > —=GON |
5 y

1 o =
/= 40N - ! faoN 7
20N -Fo

-~ —
%

40N

T T
GOwW 40W Z0W GOW 40W 20W



2.2 Pattern Analyses

Example 111: Rotation could split features into different patterns even though they
are part of the same physical pattern

Rotated EOFs derived from Rotated EOFs derived from

EOFs K=5 normalized EOFs K=5 non-normalized EOFs
EOFs and
rotated EOFs oy [ A P e
Atlantic S —T e

monthly mean
SST in DJF:

e The rotated
EOFs tend to
represent the
three action
centers in the
first EOF
separately in
different EOFs




