Physical and Mathematical Interpretations of an Adjoint Model with Application to ROMS

Andy Moore University of Colorado Boulder

Linearized Systems

- Consider a state-space (the ocean) with state vectors
- Denote $\Phi = (u, v, T, S, \varsigma, N, P, Z, D, ...)^T$

• ROMS is just a set of operators:

$\partial \Phi / \partial t = M(\Phi) + F(t)$ • In general will be nonlinear.

 For many problems it is of considerable theoretical and practical interest to consider perturbations to

• Let $\Phi \to \Phi + \delta \Phi \quad F \to F + f$ In which case: $\partial \partial \Phi / \partial t = (\partial M / \partial \Phi) \partial \Phi + M (\partial \Phi) + f(t)$ For many problems, it is sufficient to consider small perturbations: $\left| \delta \Phi^2 \right| \ll \left| \delta \Phi \right|$ and $M(\delta \Phi)$ negligible The Tangent Linear Equation (TLE): $\partial \partial \Phi / \partial t = (\partial M / \partial \Phi) \partial \Phi + f(t)$ TLE forms core of many analyses (e.g. normal modes, linear iteration of nonlinear problems (data assimil))

Matrix-Vector Notation

 ROMS solves the primitive equations in discrete form:

 $\partial \mathbf{M}/\partial \Phi \equiv \mathbf{A}(t)$ $d\delta \Phi/dt = \mathbf{A}(t)\delta \Phi + \mathbf{f}(t)$ **NLROMS** trajectory Φ

Important Questions

- Now that we have reduced the linearized ROMS (TLROMS) to a matrix, what would we like to know?
- We should perhaps ask of what value is A(t) since in reality ROMS (and the real ocean) is nonlinear?

Justification for TLROMS

- All perturbations begin in the linear regime.
- Linear regime often continues to provide useful information long after nonlinearity becomes important.
- Since the action of $M(\partial \Phi)$ is to merely "scatter" energy, linear regime yields stochastic paradigms.

The Propagator

• It is more convenient to work in terms of the TLROMS propagator: $\delta \Phi(t_f) = \mathbf{R}(t_i, t_f) \delta \Phi(t_i)$

 So, what would we like to know about R?

Dimension

- The ocean is a very large and potentially very complicated place!
- But just how complicated is it?
- What is it's effective dimension?
- Low dimension described by just a few d.o.f? or high dimension?
- Does dimension depend on where we look?

• R is a monster! $\sim 10^{5-6} \times 10^{5-6}$

Can we reduce R to something more managable?

Enter the Adjoint!

Eckart-Schmidt-Mirsky theorem: the most efficient representation of a matrix:

$$\mathbf{R} = \sum_{i=1}^{n} \mathbf{u}_{i} \lambda_{i} \mathbf{v}_{i}^{T}$$

where \mathbf{u}_i and \mathbf{v}_i are the orthonormal singular vectors of \mathbf{R}

Singular Value Decomposition (SVD).

• By definition: $\mathbf{R}\mathbf{v}_i = \lambda_i \mathbf{u}_i$ $\mathbf{R}^T \mathbf{u}_i = \lambda_i \mathbf{v}_i$

where $\lambda_i = \text{singular values}$ \mathbf{R}^{T} = transpose propagator or adjoint (wrt Euclidean norm) Clearly: $\mathbf{R}^T \mathbf{R} \mathbf{V}_i = \lambda_i^2 \mathbf{V}_i$ $\mathbf{R}\mathbf{R}^T\mathbf{u}_i = \lambda_i^2\mathbf{u}_i$

$\langle \mathbf{R}\mathbf{R}^T \rangle \mathbf{u}_k = \mathbf{v}_k \mathbf{u}_k$

So I looks like an EOF (i.e. something that we "observe").

The Question of Dimension

- The dimension of \mathbf{R} is equal to the "range" of \mathbf{R} (i.e. the set of singular vectors with $\lambda_i \neq 0$).
- Dimension="rank"=maximal # of independent rows and columns of R
- SVD is the most reliable method for determining numerically the rank of a matrix.

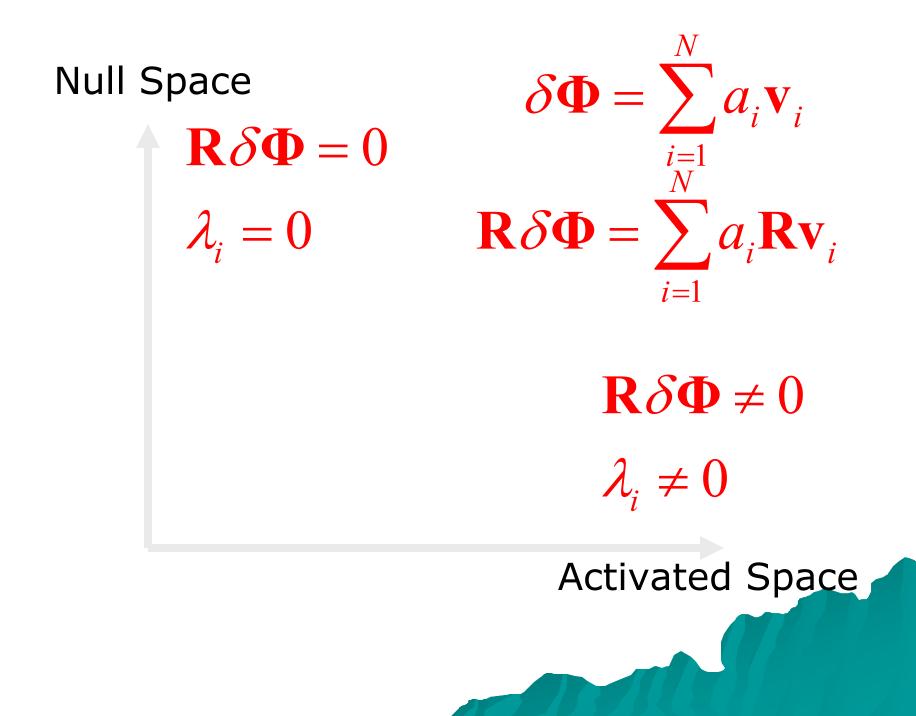
Hypothesis

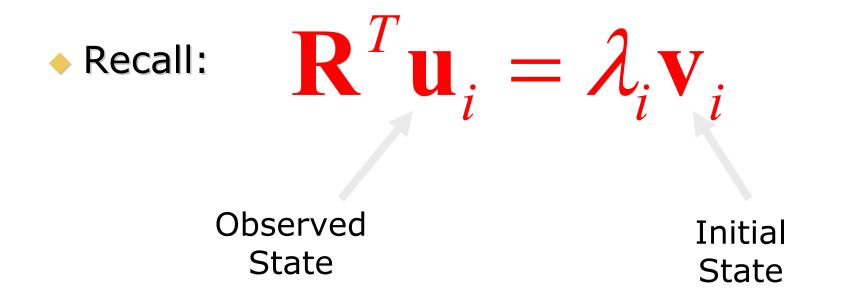
• In the limit $(\Delta x, \Delta y, \Delta z, \Delta t) \rightarrow 0$

 $\mathbf{R} \rightarrow$ to its continuous counterpart.

 The rank of R will provide fundamental information about the dimensionality of the real ocean circulation

The Active and Null Space • $\mathbf{R}\mathbf{v}_i = \lambda_i \mathbf{u}_i$ i.e. **R** Transforms from Initial state Final/Observed V-Space to u-space state \bullet Suppose **R** is an (NxN) matrix of rank P (i.e. $\lambda_i \neq 0, i = 1, \dots, P$ $\lambda_i = 0, i = P + 1, ..., N$ • If $\lambda_i = 0$, $\mathbf{Rv}_i^i = 0$ (i.e. nothing is observed). • $\lambda_i = 0$ is the Null Space of **R** • $\lambda_i \neq 0$ is the Activated Space of **R**





R^T transforms from "observed u" back to "activated v-space".

 So if we observe "u" the adjoint tells us from whence it came!

(cf Green's functions).

Generating Vectors

- Let A be an (NxM) matrix, where N<M.
- SVD yields two fundamental spaces:
 N-space and M-space

 $\mathbf{AV}_{i} = \lambda_{i} \mathbf{U}_{i}_{(N \times M)(M \times 1)}$

M-space to N-space

N-space to M-space

 $\mathbf{A}^T \mathbf{u}_i = \lambda_i \mathbf{v}_i$ $(M \times N)(N \times 1)$ $(M \times 1)$

• Consider the underdetermined system $A = b_{(N \times M)(M \times 1)}$

A, b given; X unknown.

• Unique solutions exist if: $\mathbf{X} = \mathbf{A}^T \mathbf{y}$ • Then: $\mathbf{A}\mathbf{A}^T \mathbf{y} = \mathbf{b}$ $(N \times M)(M \times N)(N \times 1)$ (N imes 1)

y is called the "generating vector".
 X is called the "natural solution".

• Suppose that A has only P non-zero singular values: $\lambda_i \neq 0, i = 1, ..., P$

• SVD: $\mathbf{A} = \mathbf{U}_{p} \mathbf{\Lambda}_{p} \mathbf{V}_{p}^{T}$ $\mathbf{A}^{T} = \mathbf{V}_{p} \mathbf{\Lambda}_{p} \mathbf{U}_{p}^{T}$ $\mathbf{x} = \mathbf{A}^{T} \mathbf{y} = \mathbf{V}_{p} (\mathbf{\Lambda}_{p} \mathbf{U}_{p}^{T} \mathbf{y}) = \mathbf{V}_{p} \mathbf{q}$

• So X is ALWAYS in P-space (i.e. "activated space" identified by A^{T})

A Familiar Example

The QG barotropic vorticity equation:

 $\frac{\partial}{\partial t} (v_x - u_y) + \beta v = 0$ • Solve for $\mathbf{u} = u\mathbf{i} + v\mathbf{j}$: underdetermined!

 Adjoint vorticity equation yields the generating (stream) function:

 $\mathbf{u} = -\partial \psi / \partial y \,\mathbf{i} + \partial \psi / \partial x \,\mathbf{j}$

Adjoint Applications

- Clearly the adjoint operator \mathbf{R}^T of ROMS yields information about the subspace or dimensions that are activated by \mathbf{R} .
- There are many applications that take advantage of this important property.

Sensitivity Analysis

• Consider a function $J = G(\Phi)$

• Clearly $\delta J = \delta \Phi^T \left(\partial G / \partial \Phi \right)$

• But $\delta \Phi(t_f) = \mathbf{R}(t_i, t_f) \delta \Phi(t_i)$

• So $\partial J/\partial \Phi = \mathbf{R}^T (t_f, t_i) (\partial G/\partial \Phi)$

Sensitivity

 Clearly the action of the adjoint restricts the sensitivity analysis to the subspace activated by R^T (i.e. to the space occupied by "natural" solutions).

Least-Squares Fitting and Data Assimilation

- If $J = (\Phi \Phi^{obs})^T X (\Phi \Phi^{obs})$ then the gradient provided by \mathbf{R}^T can be used to find $\Phi(t_i)$ that minimizes J.
- The is the idea behind 4-dimensional variational data assimilation (4DVAR)
- Clearly the $\Phi(t_i)$ that minimizes J lies within the active subspace of \mathbf{R}

Traditional Eigenmode Analysis

- We are often taught to use the eigenmodes of R to explore properties and stability of ocean.
- In general, the eigenmodes of R are NOT orthogonal, meaning each mode has a non-zero projection on other modes.
- What does this do to our notion of active and null space?

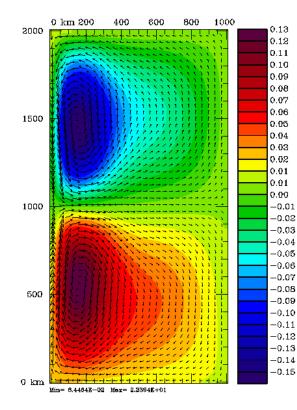
Null Space based on modes of **R**

The two spaces overlap!

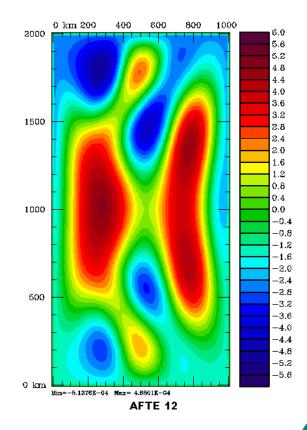
Activated Space based on modes of **R**

 The amplitude of a particular eigenmode of R is determined by its projection on the active subspace (i.e. by it's projection on the corresponding eigenmode of R^T).

Basin Modes in a Mean Flow







Basic State Circulation

Eigenmode #6

Adjoint Eigenmode #6

SVD and Generalized Stability Analysis

• Recall from SVD that: $\mathbf{R}^T \mathbf{R} \mathbf{v}_i = \lambda_i^2 \mathbf{v}_i$ • Time evolved SV is $\mathbf{R} \mathbf{v}_i$

Ratio of final to initial "energy" is:

$$\frac{(\mathbf{R}\mathbf{v}_i)^T(\mathbf{R}\mathbf{v}_i)}{(\mathbf{v}_i^T\mathbf{v})} = \frac{\mathbf{v}_i^T\mathbf{R}^T\mathbf{R}\mathbf{v}_i}{(\mathbf{v}_i^T\mathbf{v})} = \lambda_i^2$$

• So of all perturbations, \mathbf{V}_1 is the one that maximizes the growth of "energy" over the time interval $\begin{bmatrix} t_i, t_f \end{bmatrix}$.

• Consider the forced TL equation: $\partial \delta \Phi / \partial t = (\partial M / \partial \Phi) \delta \Phi + \mathbf{f}(t)$

- If f(t) is stochastic in time, more general forms of SVD are of interest.
- Assume unitary forcing: $\langle \mathbf{f}(t)\mathbf{f}^T(t) \rangle = \mathbf{I}$
- Of particular interest are:
 - $\mathbf{P} = \int \mathbf{R} \mathbf{R}^{T} dt \qquad \text{Controllability Grammiam}$ $\mathbf{Q} = \int \mathbf{R}^{T} \mathbf{R} dt \qquad \text{Observability Grammiam}$

- Eigenvectors of P are the EOFs.
 Eigenvectors of Q are the Stochastic Optimals.
- Variance: $Var = tr\{\mathbf{P}\} = tr\{\mathbf{Q}\}$
- Eigenvectors of P^{1/2}QP^{1/2} are balanced truncation vectors.

 All have considerable practical utility and applications that go far beyond traditional eigenmode analysis!

Covariance Functions and Representers

- The "controllability" Grammiam P is nothing more than a covariance matrix.
- Note that $\mathbf{b} = \mathbf{P}\mathbf{y} = \left(\int \mathbf{R}\mathbf{R}^T dt\right)\mathbf{y}$ looks a lot like: $\mathbf{A}\mathbf{A}^T\mathbf{y} = \mathbf{b}$

which yields the "natural solution".

 Operations involving P yield only natural solutions related to "Representer Functions".

Norm Dependence

- The adjoint \mathbf{R}^{\dagger} is norm dependent. • For the Euclidean norm, $\mathbf{R}^{\dagger} = \mathbf{R}^{T}$
- Changing norms is simply equivalent to a rotation and/or change in metric

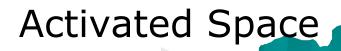
Null Space

Activated Subspace

Summary

Null Space

The adjoint identifies the bits of state-space that actually do something!



The Adjoint of ROMS is a Wonderful Thing!

The Cast of Characters

 $M(\Phi)$ - played by NLROMS **R** - played by TLROMS **R**^T - played by ADROMS

Acknowledgements

- Lanczos, C., 1961: Linear Differential Operators, Dover Press.
- Klema, V.C. and A.J. Laub, 1980: The Singular Value Decomposition: Its Computation and Some Applications. IEEE Trans. Automatic Control, AC-25, 164-176.
- Wunsch, C., 1996: The Ocean Circulation Inverse Problem, Cambridge University Press.
- Brogan, W.L., 1991: Modern Control Theory, Prentice Hall.
- Bennett, A.F., 1992: Inverse Methods in Physical Oceanography, Cambridge University Press.
- Bennett, A.F., 2002: Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press.
- Benner, P., P. Mehrmann and D. Sorensen, 2005: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, Vol. 45, Springer-Verlag.
- Trefethen, L.N and M. Embree, 2005: Spectra and Pseudospectra, Princeton University Press.
- Farrell, B.F. and P.J. Ioannou, 1996: Generalized Stability Theory, Part I: Autonomous Operators. J. Atmos. Sci., 53, 2025-2040.
- Farrell, B.F. and P.J. Ioannou, 1996: Generalized Stability Theory, Part II: Nonautonomous Operators. J. Atmos. Sci., 53, 2041-2053.

R is BIG!!!

• R is a monster! $\sim 10^{5-6} \times 10^{5-6}$

Can we reduce R to something more managable?

