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LinearizedLinearized SystemsSystems

Consider a stateConsider a state--space (the ocean) space (the ocean) 
with state vectors with state vectors 
Denote Denote 
ROMS is just a set of operators:ROMS is just a set of operators:

Φ
( , , , , , , , , ,...)Tu v T S N P Z DςΦ =

( ) F( )t t∂Φ ∂ = Μ Φ +
In general       will be nonlinear.In general       will be nonlinear.
For many problems it is of For many problems it is of 
considerable theoretical and practical considerable theoretical and practical 
interest to consider perturbations tointerest to consider perturbations to
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Φ



Let Let 
In which case:In which case:

;δΦ →Φ + Φ F F+f→

( ) ( ) ( )t f tδ δ δ∂ Φ ∂ = ∂Μ ∂Φ Φ +Μ Φ +
For many problems, it is sufficient to For many problems, it is sufficient to 
consider small perturbations: consider small perturbations: 

and              negligibleand              negligible2δ δΦ Φ
The Tangent Linear Equation (TLE):The Tangent Linear Equation (TLE):

( )δΜ Φ

( ) ( )t f tδ δ∂ Φ ∂ = ∂Μ ∂Φ Φ +
TLE forms core of many analyses TLE forms core of many analyses 
(e.g. normal modes, linear iteration (e.g. normal modes, linear iteration 
of nonlinear problems (data of nonlinear problems (data assimilassimil))))



MatrixMatrix--Vector NotationVector Notation

ROMS solves the primitive equations ROMS solves the primitive equations 
in discrete form:in discrete form:

( )t∂Μ ∂Φ ≡A
( ) ( )d dt t tδ δ= +Φ A Φ f

Φ

t
δΦ

NLROMS
trajectory



Important QuestionsImportant Questions

Now that we have reduced the Now that we have reduced the 
linearizedlinearized ROMS (TLROMS) to a ROMS (TLROMS) to a 
matrix, what would we like to know?matrix, what would we like to know?
We should perhaps ask of what value We should perhaps ask of what value 
is        since in reality ROMS (and the is        since in reality ROMS (and the 
real ocean) is nonlinear?real ocean) is nonlinear?

( )tA



Justification for TLROMSJustification for TLROMS

All perturbations begin in the linear All perturbations begin in the linear 
regime.regime.
Linear regime often continues to Linear regime often continues to 
provide useful information long after provide useful information long after 
nonlinearity becomes important.nonlinearity becomes important.
Since the action of              is to Since the action of              is to 
merely merely ““scatterscatter”” energy, linear energy, linear 
regime yields stochastic paradigms.regime yields stochastic paradigms.

( )δΜ Φ



The PropagatorThe Propagator

It is more convenient to work in It is more convenient to work in 
terms of the TLROMS propagator:terms of the TLROMS propagator:

( ) ( , ) ( )f i f it t t tδ δ=Φ R Φ
So, what would we like to know So, what would we like to know 
about     ? about     ? R



DimensionDimension

The ocean is a very large and The ocean is a very large and 
potentially very complicated place!potentially very complicated place!
But just how complicated is it?But just how complicated is it?
What is itWhat is it’’s effective dimension?s effective dimension?
Low dimension described by just a Low dimension described by just a 
few few d.o.fd.o.f? or high dimension?? or high dimension?
Does dimension depend on where we Does dimension depend on where we 
look?look?



R is BIG!!!R is BIG!!!
R is a monster!R is a monster! 5 6 5 610 10− −×∼

Can we reduce R to something more Can we reduce R to something more 
managablemanagable? ? 



Enter the Enter the AdjointAdjoint!!

EckartEckart--SchmidtSchmidt--MirskyMirsky theorem: the theorem: the 
most efficient representation of a most efficient representation of a 
matrix:matrix:

where     and     are the where     and     are the orthonormalorthonormal
singular vectors ofsingular vectors of
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Singular Value Decomposition (SVD).Singular Value Decomposition (SVD).



By definition:By definition:

where      = singular valueswhere      = singular values
= transpose propagator or= transpose propagator or

adjointadjoint ((wrtwrt EuclideanEuclidean
norm)norm)

i i iλ=Rv u
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i i iλ=R u v
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Clearly:Clearly: 2
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Consider:Consider:

So     looks like an EOF (i.e. So     looks like an EOF (i.e. 
something that we something that we ““observeobserve””).).

T
k k kν=RR u u

u



The Question of DimensionThe Question of Dimension

The dimension of      is equal to the The dimension of      is equal to the 
““rangerange”” of      (i.e. the set of singular of      (i.e. the set of singular 
vectors with            ).vectors with            ).
Dimension=Dimension=““rankrank””=maximal # of =maximal # of 
independent rows and columns ofindependent rows and columns of
SVD is the most reliable method for SVD is the most reliable method for 
determining numerically the rank of determining numerically the rank of 
a matrix.a matrix.

R
R

0iλ ≠
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In the limit                                      In the limit                                      
to its continuous counterpart.to its continuous counterpart.

HypothesisHypothesis
( , , , ) 0x y z t∆ ∆ ∆ ∆ →

→R

The rank of     will provide The rank of     will provide 
fundamental information about the fundamental information about the 
dimensionality of the real ocean dimensionality of the real ocean 
circulationcirculation

R



The Active and Null SpaceThe Active and Null Space
i.e.       Transforms fromi.e.       Transforms from
vv--space to uspace to u--spacespace

i i iλ=Rv u R

Suppose       is an (Suppose       is an (NxNNxN) matrix of ) matrix of 
rank P (i.e.     rank P (i.e.     

))
0, 1, ,i i Pλ ≠ = …
0, 1, ,i i P Nλ = = + …

If          ,               (i.e. nothing is If          ,               (i.e. nothing is 
observed).observed).

is the Null Space ofis the Null Space of
is the Activated Space ofis the Activated Space of

0iλ = 0i =Rv
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Final/Observed
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R
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Recall:Recall:

transforms from transforms from ““observed uobserved u”” back to back to 
““activated vactivated v--spacespace””..
So if we observe So if we observe ““uu”” the the adjointadjoint tells us tells us 
from whence it came!from whence it came!
((cfcf GreenGreen’’s functions).s functions).

T
i i iλ=R u v

Observed
State

Initial
State
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Generating VectorsGenerating Vectors

Let      be an (Let      be an (NxMNxM) matrix, where ) matrix, where 
N<M.N<M.
SVD yields two fundamental spaces:SVD yields two fundamental spaces:

NN--space and Mspace and M--spacespace

A

i i iλ=Av u

T
i i iλ=A u v

( )( 1)N M M× × ( 1)N ×

( )( 1)M N N× × ( 1)M ×

M-space to N-space

N-space to M-space



Consider the underdetermined systemConsider the underdetermined system

,    given;     unknown.,    given;     unknown.

=Ax b
( )( 1)N M M× × ( 1)N ×

A b x

Unique solutions exist if:Unique solutions exist if:
Then:Then:

is called the is called the ““generating vectorgenerating vector””..
is called the is called the ““natural solutionnatural solution””. . 

T=x A y
T =AA y b

( )( )( 1)N M M N N× × × ( 1)N ×

y
x



Suppose that      has only P nonSuppose that      has only P non--zero zero 
singular values:singular values:

SVD:SVD:

So     is ALWAYS in PSo     is ALWAYS in P--space (i.e. space (i.e. 
““activated spaceactivated space”” identified by       )   identified by       )   
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( )

=

=

= = =

T
p p p

T T
p p p

T T
p p p p

A U Λ V

A V Λ U

x A y V Λ U y V q

x
TA



A Familiar ExampleA Familiar Example

The QG The QG barotropicbarotropic vorticityvorticity equation:equation:

Solve for                 : Solve for                 : 
underdetermined!underdetermined!
AdjointAdjoint vorticityvorticity equation yields the equation yields the 
generating (stream) function:generating (stream) function:

( ) 0x yv u v
t

β∂
− + =

∂
u v= +u i j

y xψ ψ= −∂ ∂ + ∂ ∂u i j



AdjointAdjoint ApplicationsApplications

Clearly the Clearly the adjointadjoint operator         of operator         of 
ROMS yields information about the ROMS yields information about the 
subspace or dimensions that are subspace or dimensions that are 
activated by        .activated by        .
There are many applications that There are many applications that 
take advantage of this important take advantage of this important 
property.property.
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Sensitivity AnalysisSensitivity Analysis

Consider a function Consider a function 

ClearlyClearly

ButBut

So So 

( )J G= Φ

( )TJ Gδ δ= ∂ ∂Φ Φ

( ) ( , ) ( )f i f it t t tδ δ=Φ R Φ

( )( , )T
f iJ t t G∂ ∂ = ∂ ∂Φ R Φ

Sensitivity



Clearly the action of the Clearly the action of the adjointadjoint
restricts the sensitivity analysis to restricts the sensitivity analysis to 
the subspace activated by       (i.e. the subspace activated by       (i.e. 
to the space occupied by to the space occupied by ““naturalnatural””
solutions).solutions).

TR



LeastLeast--Squares FittingSquares Fitting
and Data Assimilationand Data Assimilation

If                                             then If                                             then 
the gradient provided by        can be the gradient provided by        can be 
used to find          that minimizes    .used to find          that minimizes    .
The is the idea behind 4The is the idea behind 4--dimensional dimensional 
variationalvariational data assimilation (4DVAR)data assimilation (4DVAR)
Clearly the           that minimizes     Clearly the           that minimizes     
lies within the active subspace oflies within the active subspace of

( ) ( )obs T obsJ = − −Φ Φ X Φ Φ
TR

J( )itΦ

( )itΦ J
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Traditional Traditional EigenmodeEigenmode AnalysisAnalysis

We are often taught to use the We are often taught to use the 
eigenmodeseigenmodes of      to explore of      to explore 
properties and stability of ocean.properties and stability of ocean.
In general, the In general, the eigenmodeseigenmodes of       of       
are NOT orthogonal, meaning each are NOT orthogonal, meaning each 
mode has a nonmode has a non--zero projection on zero projection on 
other modes.other modes.
What does this do to our notion of What does this do to our notion of 
active and null space?active and null space?

R

R



Null Space based on
modes of R

Activated Space 
based on modes of R

The two spaces overlap!



The amplitude of a particular The amplitude of a particular 
eigenmodeeigenmode of     is determined by its of     is determined by its 
projection on the active subspace projection on the active subspace 
(i.e. by it(i.e. by it’’s projection on the s projection on the 
corresponding corresponding eigenmodeeigenmode of       ).of       ).

R

TR



Basin Modes in a Mean FlowBasin Modes in a Mean Flow

Basic State
Circulation

Eigenmode #6 Adjoint
Eigenmode #6



SVD and Generalized StabilitySVD and Generalized Stability
AnalysisAnalysis

Recall from SVD that:Recall from SVD that:
Time evolved SV isTime evolved SV is
Ratio of final to initial Ratio of final to initial ““energyenergy”” is:is:

So of all perturbations,     is the one that So of all perturbations,     is the one that 
maximizes the growth of maximizes the growth of ““energyenergy”” over over 
the time interval            .the time interval            .
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Consider the forced TL equation:Consider the forced TL equation:

If       is stochastic in time, more If       is stochastic in time, more 
general forms of SVD are of interest.general forms of SVD are of interest.
Assume unitary forcing:Assume unitary forcing:
Of particular interest are:Of particular interest are:

( ) ( )t tδ δ∂ ∂ = ∂Μ ∂ +Φ Φ Φ f

( )tf

Tdt= ∫P RR
T dt= ∫Q R R

Controllability Grammiam

Observability Grammiam

( ) ( )Tt t =f f I



Eigenvectors of       are the Eigenvectors of       are the EOFsEOFs..
Eigenvectors of       are the Eigenvectors of       are the 
Stochastic Stochastic OptimalsOptimals..
Variance:Variance:

Eigenvectors of               are Eigenvectors of               are 
balanced truncation vectors.balanced truncation vectors.

All have considerable practical utility All have considerable practical utility 
and applications that go far beyond and applications that go far beyond 
traditional traditional eigenmodeeigenmode analysis!analysis!

P
Q

1 2 1 2P QP

{ } { }tr trVar = =P Q



Covariance Functions andCovariance Functions and
RepresentersRepresenters

The The ““controllabilitycontrollability”” GrammiamGrammiam is is 
nothing more than a covariance nothing more than a covariance 
matrix.matrix.
Note that                                      Note that                                      
looks a lot like:looks a lot like:

which yields the which yields the ““natural solutionnatural solution””..
Operations involving    yield only Operations involving    yield only 
natural solutions related to natural solutions related to 
““RepresenterRepresenter FunctionsFunctions””..

P

( )Tdt= = ∫b Py RR y
T =AA y b

P



Norm DependenceNorm Dependence

The The adjointadjoint is norm dependent.is norm dependent.
For the Euclidean norm,  For the Euclidean norm,  
Changing norms is simply equivalent Changing norms is simply equivalent 
to a rotation and/or change in metricto a rotation and/or change in metric

†R
† T=R R

Activated Subspace
Null Space



Null Space

Activated Space

SummarySummary

The adjoint identifies the bits of state-space
that actually do something!



The Adjoint of ROMS
is a Wonderful Thing!



The Cast of CharactersThe Cast of Characters

- played by NLROMS

- played by TLROMS

- played by ADROMS

( )Μ Φ
R
TR
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R is BIG!!!R is BIG!!!

R is a monster!R is a monster!

Can we reduce R to something more Can we reduce R to something more 
managablemanagable? ? 

5 6 5 610 10− −×∼


