Physical and Mathematical Interpretations of an Adjoint Model with Application to ROMS

Andy Moore
University of Colorado
Boulder

Linearized Systems

Consider a state-space (the ocean) with state vectors Φ
Denote $\Phi=(u, v, T, S, \varsigma, N, P, Z, D, \ldots)^{T}$
ROMS is just a set of operators:

$$
\partial \Phi / \partial t=\mathrm{M}(\Phi)+\mathrm{F}(t)
$$

In general will be nonlinear.
For many problems it is of considerable theoretical and practical interest to consider perturbations to

Let $\Phi \rightarrow \Phi+\delta \Phi \quad \mathrm{F} \rightarrow \mathrm{F}+f$
In which case:
$\partial \delta \Phi / \partial t=(\partial \mathrm{M} / \partial \Phi) \delta \Phi+\mathrm{M}(\delta \Phi)+f(t)$ For many problems, it is sufficient to consider small perturbations: $\left|\delta \Phi^{2}\right| \ll|\delta \Phi|$ and $\mathrm{M}(\delta \Phi)$ negligible The Tangent Linear Equation (TLE): $\partial \delta \Phi / \partial t=(\partial \mathrm{M} / \partial \Phi) \delta \Phi+f(t)$
TLE forms core of many analyses (e.g. normal modes, linear iteration of nonlinear problems (data assimil))

Matrix-Vector Notation

ROMS solves the primitive equations

 in discrete form:$\partial \mathrm{M} / \partial \Phi \equiv \mathbf{A}(t)$
$d \delta \boldsymbol{\Phi} / d t=\mathbf{A}(t) \delta \Phi+\mathbf{f}(t)$
NLROMS
trajectory

Important Questions

Now that we have reduced the linearized ROMS (TLROMS) to a matrix, what would we like to know?
We should perhaps ask of what value is $\mathbf{A}(t)$ since in reality ROMS (and the real ocean) is nonlinear?

Justification for TLROMS

All perturbations begin in the linear regime.

- Linear regime often continues to provide useful information long after nonlinearity becomes important. Since the action of $\mathrm{M}(\delta \Phi)$ is to merely "scatter" energy, linear regime yields stochastic paradigms.

The Propagator

It is more convenient to work in terms of the TLROMS propagator:

$$
\delta \boldsymbol{\Phi}\left(t_{f}\right)=\mathbf{R}\left(t_{i}, t_{f}\right) \delta \boldsymbol{\Phi}\left(t_{i}\right)
$$

So, what would we like to know about R ?

Dimension

The ocean is a very large and potentially very complicated place! But just how complicated is it? What is it's effective dimension? Low dimension described by just a few d.o.f? or high dimension?
Does dimension depend on where we look?

R is $\mathrm{BIG}!!!$

R is a monster! $\sim 10^{5-6} \times 10^{5-6}$

Can we reduce R to something more managable?

Enter the Adjoint!

Eckart-Schmidt-Mirsky theorem: the most efficient representation of a matrix:

$$
\mathbf{R}=\sum_{i=1}^{K} \mathbf{u}_{i} \lambda_{i} \mathbf{v}_{i}^{T}
$$

where \mathbf{u}_{i} and \mathbf{v}_{i} are the orthonormal singular vectors of \mathbf{R}

Singular Value Decomposition (SVD).

By definition: $\quad \mathbf{R v}_{i}=\lambda_{i} \mathbf{u}_{i}$

$$
\mathbf{R}^{T} \mathbf{u}_{i}=\lambda_{i} \mathbf{v}_{i}
$$

where $\lambda_{i_{T}}=$ singular values
$\mathbf{R}^{T}=$ transpose propagator or adjoint (wrt Euclidean norm)
Clearly:

$$
\begin{aligned}
\mathbf{R}^{T} \mathbf{R} \mathbf{v}_{i} & =\lambda_{i}^{2} \mathbf{v}_{i} \\
\mathbf{R}^{T} \mathbf{u}_{i} & =\lambda_{i}^{2} \mathbf{u}
\end{aligned}
$$

Consider:

$$
\left\langle\mathbf{R} \mathbf{R}^{T}\right\rangle \mathbf{u}_{k}=v_{k} \mathbf{u}_{k}
$$

So ulooks like an EOF (i.e. something that we "observe").

The Question of Dimension

The dimension of \mathbf{R} is equal to the "range" of \mathbf{R} (i.e. the set of singular vectors with $\lambda_{i} \neq 0$).
Dimension="rank"=maximal \# of independent rows and columns of \mathbf{R} SVD is the most reliable method for determining numerically the rank of a matrix.

Hypothesis

In the limit $(\Delta x, \Delta y, \Delta z, \Delta t) \rightarrow 0$ $\mathbf{R} \rightarrow$ to its continuous counterpart.

The rank of \mathbf{R} will provide fundamental information about the dimensionality of the real ocean circulation

The Active and Null Space

$\mathbf{R} \mathbf{v}_{i}=\lambda_{i} \mathbf{u}_{i}$ i.e. \mathbf{R} Transforms from

 Initial state $_{\text {Final/Observed }} \mathrm{v}$-space to u -space stateSuppose \mathbf{R} is an ($\mathrm{N} x \mathrm{~N}$) matrix of rank P (i.e. $\lambda_{i} \neq 0, i=1, \ldots, P$

If $\lambda_{i}=0, \mathbf{R} \mathbf{v}_{i}=0$ (i.e. nothing is observed).
$\lambda_{i}=0$ is the Null Space of \mathbf{R} $\lambda_{i} \neq 0$ is the Activated Space of

Null Space

$$
\begin{aligned}
& \mathbf{R} \delta \mathbf{\Phi}=0 \\
& \lambda_{i}=0
\end{aligned}
$$

$$
\begin{aligned}
\delta \boldsymbol{\Phi} & =\sum_{i=1}^{N} a_{i} \mathbf{v}_{i} \\
\mathbf{R} \delta \boldsymbol{\Phi} & =\sum_{i=1}^{N} a_{i} \mathbf{R} \mathbf{v}_{i}
\end{aligned}
$$

$$
\mathbf{R} \delta \mathbf{\Phi} \neq 0
$$

$$
\lambda_{i} \neq 0
$$

Activated Space

Recall: $\mathbf{R}^{T} \mathbf{u}_{i}=\lambda_{i} \mathbf{V}_{i}$

Observed
State

Initial
State
\mathbf{R}^{T} transforms from "observed u" back to "activated v-space".
So if we observe "u" the adjoint tells us from whence it came!
(cf Green's functions).

Generating Vectors

Let \mathbf{A} be an (NxM) matrix, where $\mathrm{N}<\mathrm{M}$.
-SVD yields two fundamental spaces: N -space and M -space
$\underset{N \times M)(M \times 1)}{\mathbf{A}} \mathbf{V}_{i}=\lambda_{\underset{(N \times 1)}{ }}^{\mathbf{u}_{i}} \quad M$-space to N-space
$\underset{(M \times N)(N \times 1)}{\mathbf{A}^{T}} \mathbf{u}_{i}=\lambda_{(M \times 1)}^{i} \mathbf{V}_{i} \quad N$-space to M-space

Consider the underdetermined system

$$
\underset{N \times x \times(x) \times 1)}{\mathbf{A x}}=\underset{(x \times 1)}{\mathbf{b}}
$$

A, b given; \mathbf{x} unknown.
Unique solutions exist if: $\mathbf{x}=\mathbf{A}^{T} \mathbf{y}$ Then:

$$
\underset{(N \times M)(M \times N)(N \times N \times 1)}{ } \mathbf{A}^{T} \mathbf{y}=\underset{(N \times 1)}{\mathbf{b}}
$$

\mathbf{y} is called the "generating vector". \mathbf{x} is called the "natural-solution".

Suppose that \mathbf{A} has only P non-zero singular values: $\lambda_{i} \neq 0, i=1, \ldots, P$

$$
\begin{aligned}
\text { SVD: } & \mathbf{A}=\mathbf{U}_{p} \Lambda_{p} \mathbf{V}_{p}^{T} \\
& \mathbf{A}^{T}=\mathbf{V}_{p} \Lambda_{p} \mathbf{U}_{p}^{T} \\
& \mathbf{x}=\mathbf{A}^{T} \mathbf{y}=\mathbf{V}_{p}\left(\mathbf{\Lambda}_{p} \mathbf{U}_{\mathrm{p}}^{\mathrm{T}} \mathbf{y}\right)=\mathbf{V}_{\mathrm{p}} \mathbf{q}
\end{aligned}
$$

So \mathbf{x} is ALWAYS in P -space (i.e. "activated space" identified by A^{T})

A Familiar Example

The QG barotropic vorticity equation:

$$
\frac{\partial}{\partial t}\left(v_{x}-u_{y}\right)+\beta v=0
$$

Solve for $\mathbf{u}=u \mathbf{i}+v \mathbf{j}:$ underdetermined!
Adjoint vorticity equation yields the generating (stream) function:

$$
\mathbf{u}=-\partial \psi / \partial y \mathbf{i}+\partial \psi / \partial x \mathbf{j}
$$

Adjoint Applications

Clearly the adjoint operator \mathbf{R}^{T} of ROMS yields information about the subspace or dimensions that are activated by \mathbf{R}.
There are many applications that take advantage of this important property.

Sensitivity Analysis

Consider a function $J=G(\Phi)$

Clearly $\delta J=\delta \Phi^{T}(\partial G / \partial \Phi)$
But $\delta \Phi\left(t_{f}\right)=\mathbf{R}\left(t_{i}, t_{f}\right) \delta \Phi\left(t_{i}\right)$
So $\partial J / \partial \boldsymbol{\Phi}=\mathbf{R}^{T}\left(t_{f}, t_{i}\right)(\partial G / \partial \Phi)$

Sensitivity

Clearly the action of the adjoint restricts the sensitivity analysis to the subspace activated by \mathbf{R}^{T} (i.e. to the space occupied by "natural" solutions).

Least-Squares Fitting and Data Assimilation

If $J=\left(\boldsymbol{\Phi}-\boldsymbol{\Phi}^{\text {obs }}\right)^{T} \mathbf{X}\left(\boldsymbol{\Phi}-\boldsymbol{\Phi}^{\text {obs }}\right)$ then the gradient provided by \mathbf{R}^{T} can be used to find $\boldsymbol{\Phi}\left(t_{i}\right)$ that minimizes J.
The is the idea behind 4-dimensional variational data assimilation (4DVAR) Clearly the $\boldsymbol{\Phi}\left(t_{i}\right)$ that minimizes J lies within the active subspace of \mathbf{R}

Traditional Eigenmode Analysis

We are often taught to use the eigenmodes of \mathbf{R} to explore properties and stability of ocean. In general, the eigenmodes of \mathbf{R} are NOT orthogonal, meaning each mode has a non-zero projection on other modes.
What does this do to our notion of active and null space?

Null Space based on modes of \mathbf{R}

The two spaces overlap!

Activated Space based on modes of

The amplitude of a particular eigenmode of \mathbf{R} is determined by its projection on the active subspace (i.e. by it's projection on the corresponding eigenmode of \mathbf{R}^{T}).

Basin Modes in a Mean Flow

Basic State Circulation

Eigenmode \#6

Adjoint Eigenmode \#6

SVD and Generalized Stability Analysis

Recall from SVD that: $\mathbf{R}^{T} \mathbf{R} \mathbf{v}_{i}=\lambda_{i}^{2} \mathbf{v}_{i}$ Time evolved SV is $\mathbf{R} \mathbf{v}_{i}$ Ratio of final to initial "energy" is:

$$
\frac{\left(\mathbf{R} \mathbf{v}_{i}\right)^{T}\left(\mathbf{R} \mathbf{v}_{i}\right)}{\left(\mathbf{v}_{i}^{T} \mathbf{v}\right)}=\frac{\mathbf{v}_{i}^{T} \mathbf{R}^{T} \mathbf{R} \mathbf{v}_{i}}{\left(\mathbf{v}_{i}^{T} \mathbf{v}\right)}=\lambda_{i}^{2}
$$

So of all perturbations, \mathbf{V}_{1} is the one that maximizes the growth of "energy" over the time interval $\left[t_{i}, t_{f}\right]$.

Consider the forced TL equation:

$$
\partial \delta \boldsymbol{\Phi} / \partial t=(\partial \mathbf{M} / \partial \boldsymbol{\Phi}) \delta \boldsymbol{\Phi}+\mathbf{f}(t)
$$

If $\mathbf{f}(t)$ is stochastic in time, more general forms of SVD are of interest. Assume unitary forcing: $\left\langle\mathbf{f}(t) \mathbf{f}^{T}(t)\right\rangle=\mathbf{I}$ Of particular interest are:
$\mathbf{P}=\int \mathbf{R} \mathbf{R}^{T} d t \longleftarrow$ Controllability Grammiam
$\mathbf{Q}=\int \mathbf{R}^{T} \mathbf{R} d t \quad$ Observability Grammiam

Eigenvectors of \mathbf{P} are the EOFs. Eigenvectors of \mathbf{Q} are the Stochastic Optimals. Variance: $\operatorname{Var}=\operatorname{tr}\{\mathbf{P}\}=\operatorname{tr}\{\mathbf{Q}\}$

Eigenvectors of $\mathbf{P}^{1 / 2} \mathbf{Q} \mathbf{P}^{1 / 2}$ are balanced truncation vectors.

- All have considerable practical utility and applications that go far beyond traditional eigenmode analysis!

Covariance Functions and

Representers

The "controllability" Grammiam \mathbf{P} is nothing more than a covariance matrix.
Note that $\mathbf{b}=\mathbf{P y}=\left(\int \mathbf{R}^{T} d t\right) \mathbf{y}$
looks a lot like:

$$
\mathbf{A} \mathbf{A}^{T} \mathbf{y}=\mathbf{b}
$$

which yields the "natural solution". Operations involving Pyield only natural solutions related to "Representer Functions".

Norm Dependence

The adjoint \mathbf{R}^{\dagger} is norm dependent. For the Euclidean norm, $\mathbf{R}^{\dagger}=\mathbf{R}^{T}$
Changing norms is simply equivalent to a rotation and/or change in metric

Null Space
Activated Subspace

Summary

Null Space

The adjoint identifies the bits of state-space that actually do something!

Activated Space

The Adjoint of ROMS is a Wonderful Thing!

The Cast of Characters

$$
\begin{array}{ll}
M(\Phi) & \text { - played by NLROMS } \\
\mathbf{R} & \text { - played by TLROMS } \\
\mathbf{R}^{T} & \text { - played by ADROMS }
\end{array}
$$

Acknowledgements

- Lanczos, C., 1961: Linear Differential Operators, Dover Press.
- Klema, V.C. and A.J. Laub, 1980: The Singular Value Decomposition: Its Computation and Some Applications. IEEE Trans. Automatic Control, AC25, 164-176.
- Wunsch, C., 1996: The Ocean Circulation Inverse Problem, Cambridge University Press.
- Brogan, W.L., 1991: Modern Control Theory, Prentice Hall.
- Bennett, A.F., 1992: Inverse Methods in Physical Oceanography, Cambridge University Press.
- Bennett, A.F., 2002: Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press.
- Benner, P., P. Mehrmann and D. Sorensen, 2005: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, Vol. 45, Springer-Verlag.
- Trefethen, L.N and M. Embree, 2005: Spectra and Pseudospectra, Princeton University Press.
- Farrell, B.F. and P.J. Ioannou, 1996: Generalized Stability Theory, Part I: Autonomous Operators. J. Atmos. Sci., 53, 2025-2040.
- Farrell, B.F. and P.J. Ioannou, 1996: Generalized Stability Theory, Part II: Nonautonomous Operators. J. Atmos. Sci., 53, 2041-2053.

R is $\mathrm{BIG}!!!$

R is a monster! $\sim 10^{5-6} \times 10^{5-6}$

Can we reduce R to something more managable?

